不确定数据上的概率排名查询
1. 研究重点概述
在不确定数据分析中,概率排名查询面临着诸多挑战。例如,如何利用排名查询中的概率、如何开发高效且可扩展的查询处理方法等。为了解决这些问题,研究聚焦于以下几个方面:
1.1 扩展不确定数据模型
- 不确定数据流模型 :描述分布随时间演变的不确定对象。
- 概率链接模型 :在不确定对象中引入对象间的依赖关系。
- 不确定道路网络模型 :将道路网络中每条边的权重建模为不确定对象。
1.2 探讨不确定数据排名的新问题
从数据粒度、排名范围和查询类型等多个方面和层次,提出了五个新的不确定数据排名问题。
1.3 研究查询处理方法
- 精确计算方法 :结合统计原理和可扩展的计算技术,计算查询的精确答案。
- 随机估计算法 :开发高效的随机算法,估计排名查询的答案。
- 近似方法 :根据排名查询答案的分布特征,设计高效的近似方法。
2. 基本不确定数据模型
不确定数据可以在可能世界语义模型下进行表示,技术上有两种方式。
2.1 不确定对象模型
不确定对象 $O$ 由一个潜在的随机变量 $X$ 支配。理论上,若 $X$ 是连续