8、不确定数据上的Top-k典型性查询方法解析

不确定数据上的Top-k典型性查询方法解析

在处理不确定数据时,Top-k典型性查询是一个重要的问题。本文将详细介绍解决该问题的多种方法,包括不同算法的原理、复杂度分析以及它们的优缺点。

1. 简单典型性查询的回答

在进行Top-k典型性查询时,内核函数和带宽值的选择会影响查询结果。研究表明,使用表4.1中列出的不同内核函数计算的答案大多是一致的。而且,在$h = 1.06s\sqrt[5]{n}$附近使用不同的带宽值也能得到一致的答案。

名称 内核函数
均匀 $K(u) = \frac{1}{2}I(
三角形 $K(u) = (1 -
Epanechnikov $K(u) = \frac{3}{4}(1 - u^2)I(
四次方 $K(u) = \frac{15}{16}(1 - u^2)^2I(
三重权重 $K(u) = \frac{35}{32}(1 - u^2)^3I(
高斯 $K(u) = \frac{1}{\sqrt{2\pi}} e^{-\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值