不确定数据上的Top-k典型性查询方法解析
在处理不确定数据时,Top-k典型性查询是一个重要的问题。本文将详细介绍解决该问题的多种方法,包括不同算法的原理、复杂度分析以及它们的优缺点。
1. 简单典型性查询的回答
在进行Top-k典型性查询时,内核函数和带宽值的选择会影响查询结果。研究表明,使用表4.1中列出的不同内核函数计算的答案大多是一致的。而且,在$h = 1.06s\sqrt[5]{n}$附近使用不同的带宽值也能得到一致的答案。
名称 | 内核函数 |
---|---|
均匀 | $K(u) = \frac{1}{2}I( |
三角形 | $K(u) = (1 - |
Epanechnikov | $K(u) = \frac{3}{4}(1 - u^2)I( |
四次方 | $K(u) = \frac{15}{16}(1 - u^2)^2I( |
三重权重 | $K(u) = \frac{35}{32}(1 - u^2)^3I( |
高斯 | $K(u) = \frac{1}{\sqrt{2\pi}} e^{-\ |