19、不确定流与概率关联上的排名查询研究

不确定流与概率关联上的排名查询研究

1 不确定流上的连续排名查询

1.1 近似质量

对于流的滑动窗口 $W(O)$,使用 $\frac{\hat{U}(Pr_k(O)) - \hat{L}(Pr_k(O))}{2}$ 作为 $Pr_k(O)$ 的近似。有定理表明,设 $\hat{Pr}_k(O) = \frac{\hat{U}(Pr_k(O)) - \hat{L}(Pr_k(O))}{2}$,则 $|\hat{Pr}_k(O) - Pr_k(O)| \leq \varphi + \varepsilon$。证明过程基于相关定理得出 $\hat{U}(Pr_k(O)) - \hat{L}(Pr_k(O)) \leq U(Pr_k(O)) - L(Pr_k(O)) + 2\varepsilon \leq 2\varphi + 2\varepsilon$,进而直接得到该定理。

1.2 基于分位数的空间高效算法

1.2.1 算法原理

确定性算法和采样算法都可以通过近似分位数摘要进行扩展。使用近似分位数摘要时,滑动窗口中的每个流由 $\lceil\frac{1}{\varphi}\rceil$ 个区间表示。每个区间的前 k 概率的上下界可以使用确定性方法或采样方法计算。
- 确定性方法计算上下界步骤
1. 按排名顺序对所有区间的最大值和最小值进行排序。
2. 扫描排序后的列表一次,计算每个区间的前 k 概率的近似上下界。
3. 对于每个流 $O$,维护 $W(O)$ 中已扫描实例数量的上下界,以及到目前为止 $Pr_k(O)$ 的上下界。
该扩展算法在滑动窗口中查询评估

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值