9、抖动测量的方法与分析

抖动测量的方法与分析

1. 信号平滑方法

1.1 移动平均

移动平均可对信号进行平滑处理。对于连续窗口大小为 (2m + 1)((i) 从 (-m) 到 (m))的奇数个点,其移动平均定义为:
[y_{k}^{(s)} = \frac{\sum_{i = -m}^{m} y_{k + i}}{2m + 1}]
这里,奇数 (2m + 1) 被称为滤波器宽度。宽度越大,平滑效果越明显,但可能会导致原始信号过度平滑。移动平均适用于受加性均匀噪声影响的线性信号,不过在实际应用中,这种理想情况较少出现。

1.2 加权移动平均

在移动平均法中,窗口内每个点的重要性相同。而加权移动平均会给距离 (y_{k}) 较远的点赋予较小的权重。引入权重 (W_{i}) 后,平滑后的信号 (y_{k}^{(s)}) 可表示为:
[y_{k}^{(s)} = \sum_{i = -m}^{m} W_{m + i} y_{k + i}]
且满足 (\sum_{i = -m}^{m} W_{i} = 1)。使用加权移动平均时,通常会给近期的值赋予更高的权重。

1.3 Savitzky - Golay 方法

该方法的核心是通过将数据 (y_{k}) 与 (2m + 1) 个相邻点(包括待平滑点)拟合为多项式,来找到加权系数(卷积整数)进行平滑操作,其中 (m) 需大于或等于多项式的阶数。Savitzky 和 Golay 证明,移动多项式拟合在数值处理上与加权移动平均相同,因为平滑过程的系数对于所有 (y_{k}) 都是常数。平滑后的数据 (y_{k}^{(s)}) 可通过以下公式计算:
[y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值