抖动测量的方法与分析
1. 信号平滑方法
1.1 移动平均
移动平均可对信号进行平滑处理。对于连续窗口大小为 (2m + 1)((i) 从 (-m) 到 (m))的奇数个点,其移动平均定义为:
[y_{k}^{(s)} = \frac{\sum_{i = -m}^{m} y_{k + i}}{2m + 1}]
这里,奇数 (2m + 1) 被称为滤波器宽度。宽度越大,平滑效果越明显,但可能会导致原始信号过度平滑。移动平均适用于受加性均匀噪声影响的线性信号,不过在实际应用中,这种理想情况较少出现。
1.2 加权移动平均
在移动平均法中,窗口内每个点的重要性相同。而加权移动平均会给距离 (y_{k}) 较远的点赋予较小的权重。引入权重 (W_{i}) 后,平滑后的信号 (y_{k}^{(s)}) 可表示为:
[y_{k}^{(s)} = \sum_{i = -m}^{m} W_{m + i} y_{k + i}]
且满足 (\sum_{i = -m}^{m} W_{i} = 1)。使用加权移动平均时,通常会给近期的值赋予更高的权重。
1.3 Savitzky - Golay 方法
该方法的核心是通过将数据 (y_{k}) 与 (2m + 1) 个相邻点(包括待平滑点)拟合为多项式,来找到加权系数(卷积整数)进行平滑操作,其中 (m) 需大于或等于多项式的阶数。Savitzky 和 Golay 证明,移动多项式拟合在数值处理上与加权移动平均相同,因为平滑过程的系数对于所有 (y_{k}) 都是常数。平滑后的数据 (y_{k}^{(s)}) 可通过以下公式计算:
[y