matlab 多元逐步回归详解(stepwise使用指南)

一、问题

某种水泥在凝固时放出的热量 Y(单位:卡/克)与水泥中 4 种化学成品所占的百分比有关:在生产中测得 12 组数据,见下表,试建立 Y 关于这些因子的“最优”线性回归方程。
在这里插入图片描述

二、实现

X=[7,26,6,60;
   1,29,15,52;
   11,56,8,20;
   11,31,8,47;
   7,52,6,33;
   11,55,9,22;
   3,71,17,6;
   1,31,22,44;
   2,54,18,22;
   21,47,4,26;
   1,40,23,34;
   11,66,9,12];   #自变量数据,12个样本,每个样本4维
Y=[78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5,93.1,115.9,83.8,113.3];  #因变量数据  12个样本值
stepwise(X,Y,[1,2,3,4],0.05,0.10)  #[1,2,3,4]表示X1、X2、X3、X4均保留在模型中

这里的stepwise函数表示逐步回归,第一个参数为自变量数据矩阵,第二个参数为因变量数据,第三个参数表示哪几个向量应该在最初的模型中,第四个参数为Max P-value,不设置时默认为0.05,第个参数为Min P-value,不设置时默认为0.10。正常使用直接使用默认值。

程序运行后一直点Next Step,直到变灰为止。或者直接点击All Steps。得到最终运行结果后,查看R-square值和p值,前者越接近1,后者越接近0,模型越准。

三、结果

在这里插入图片描述
蓝色的表示留下来的变量(X1 ,X2),其他的不要,t-stat就是所求系数。

最后的回归方程为:

Y=51.6241+1.47601*X1+0.686734*X2
多元线性回归预测模型的MATLAB代码可以使用ridge regression(岭回归)方法来实现。岭回归是一种用于处理多重共线性问题的回归方法,它通过在模型中添加一个正则化项来控制模型的复杂度。 下面是一个使用MATLAB实现岭回归的函数示例: ```MATLAB function \[w\] = ridgeRegression(x, y, lam) xTx = x' * x; \[m, n\] = size(xTx); temp = xTx + eye(m, n) * lam; if det(temp) == 0 disp('This matrix is singular, cannot do inverse'); end w = temp^(-1) * x' * y; end ``` 在这个函数中,输入参数x是一个包含多个特征的矩阵,y是对应的目标变量向量,lam是岭回归的正则化参数。函数的输出w是回归系数向量,可以用于预测新的样本。 要使用这个函数来建立多元线性回归模型,你需要先准备好包含特征和目标变量的数据集。然后,将特征矩阵和目标变量向量作为输入参数传递给ridgeRegression函数,同时指定合适的正则化参数lam。函数将返回回归系数向量w,可以用于预测新的样本。 参考文献: - \[1\] 数学建模与数学试验多元线性回归MATLAB实现 - \[2\] 逐步回归详解(stepwise使用指南) - \[3\] 基于Matlab的数据多元回归分析的研究 请注意,这只是一个示例函数,具体的多元线性回归模型的建立和预测过程可能需要根据具体的数据和问题进行调整。 #### 引用[.reference_title] - *1* *3* [MATLAB实现多元线性回归预测](https://blog.csdn.net/weixin_34315665/article/details/85948933)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [基于matlab多元线性回归分析](https://blog.csdn.net/xiaoxiaodawei/article/details/105707346)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值