(A卷,100分) - 数组二叉树(Java & Python & C++ & JavaScript&GO)

题目描述

二叉树也可以用数组来存储,给定一个数组,树的根节点的值存储在下标1,对于存储在下标N的节点,它的左子节点和右子节点分别存储在下标2N和2N+1,并且我们用值-1代表一个节点为空。

给定一个数组存储的二叉树,试求从根节点到最小的叶子节点的路径,路径由节点的值组成。

输入描述

输入一行为数组的内容,数组的每个元素都是正整数,元素间用空格分隔。

注意第一个元素即为根节点的值,即数组的第N个元素对应下标N,下标0在树的表示中没有使用,所以我们省略了。

输入的树最多为7层。

输出描述

输出从根节点到最小叶子节点的路径上,各个节点的值,由空格分隔,用例保证最小叶子节点只有一个。

用例1

输入

3 5 7 -1 -1 2 4

输出

3 7 2

说明

最小叶子节点的路径为3 7 2。

示例2

输入

5 9 8 -1 -1 7 -1 -1 -1 -1 -1 6

输出

5 8 7 6

说明

最小叶子节点的路径为5 8 7 6,注意数组仅存储至最后一个非空节点,故不包含节点“7”右子节点的-1。

题解

思路:

  1. for循环寻找到最小叶子节点值位置。
  2. 迭代收集叶子节点到根节点经过路径的值。

c++

#include <cstdint>
#include<iostream>
#include<vector>
#include<string>
#include <utility> 
#include <sstream>
#include<algorithm>
#include <cmath>
#include <climits>
using namespace std;// 计算完全二叉树的层数
int compute_height(int N) {
    return ceil(log2(N + 1));
}bool judege(vector<int> ans, int pos) {
    int n = ans.size();
    return (pos >= n || ans[pos] == -1);
}int main() {
    vector<int> ans;
    int tmp;
    while (cin >> tmp) {
        ans.push_back(tmp);
    }
​
    vector<int> res;
    int n = ans.size();
    // 最小叶子节点值位置
    int pos = -1;
    // 最小叶子节点值位置
    int minValue = INT_MAX;for (int i = 0; i < n; i++) {
        int leftIndex = 2 * (i+1) -1;
        int rightIndex = 2 * (i+1);
        if (ans[i] == -1) {
            continue;
        }
        // 判断是否是叶子节点
        if (judege(ans, leftIndex) &&judege(ans, rightIndex)) {
              if (ans[i] < minValue) {
                 pos = i;
                 minValue = ans[i];
              }
        }
    }
    // 添加叶子节点到根节点的值
    while (pos != 0) {
        res.push_back(ans[pos]);
        pos = (pos-1) / 2;
    }
    res.push_back(ans[0]);for (int i = res.size()-1; i >= 0; i--) {
        cout << res[i];
        if (i != 0) {
            cout << " ";
        }
    }
    return 0;
}

JAVA

import java.util.Arrays;
import java.util.LinkedList;
import java.util.Scanner;
import java.util.StringJoiner;public class Main {
  public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);Integer[] arr =
        Arrays.stream(sc.nextLine().split(" ")).map(Integer::parseInt).toArray(Integer[]::new);System.out.println(getResult(arr));
  }public static String getResult(Integer[] arr) {
    int n = arr.length - 1;// 最小叶子节点的值
    int min = Integer.MAX_VALUE;
    // 最小叶子节点的索引
    int minIdx = -1;// 求解最小叶子节点的值和索引
    for (int i = n; i >= 0; i--) {
      if (arr[i] != -1) {
        if (i * 2 + 1 <= n && arr[i * 2 + 1] != -1) continue;
        if (i * 2 + 2 <= n && arr[i * 2 + 2] != -1) continue;
        if (min > arr[i]) {
          min = arr[i];
          minIdx = i;
        }
      }
    }// path用于缓存最小叶子节点到根的路径
    LinkedList<Integer> path = new LinkedList<>();
    path.addFirst(min);// 从最小叶子节点开始向上找父节点,直到树顶
    while (minIdx != 0) {
      int f = (minIdx - 1) / 2;
      path.addFirst(arr[f]);
      minIdx = f;
    }StringJoiner sj = new StringJoiner(" ");
    for (Integer val : path) sj.add(val + "");return sj.toString();
  }
}

Python

import sys
​
# 输入获取
arr = list(map(int, input().split()))
​
​
# 算法入口
def getResult(arr):
    # 最小叶子节点的值
    minV = sys.maxsize
    # 最小节点在数组中的索引位置
    minIdx = -1
    n = len(arr) - 1for i in range(n, -1, -1):
        if arr[i] != -1:
            if i * 2 + 1 <= n and arr[i * 2 + 1] != -1:
                continue
            if i * 2 + 2 <= n and arr[i * 2 + 2] != -1:
                continueif minV > arr[i]:
                minV = arr[i]
                minIdx = i
​
    # path用于缓存最小叶子节点到根的路径
    path = []
    path.insert(0, str(minV))# 从最小值节点开始向上找父节点,直到树顶
    while minIdx != 0:
        f = (minIdx - 1) // 2
        path.insert(0, str(arr[f]))
        minIdx = f
​
    return " ".join(path)
​
​
# 算法调用
print(getResult(arr))

JavaScript

/* JavaScript Node ACM模式 控制台输入获取 */
const readline = require("readline");const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout,
});
​
rl.on("line", (line) => {
  const arr = line.split(" ").map(Number);
  let n = arr.length - 1;
  // 最小叶子节点的值
  let min = Infinity;
  // 最小节点在数组中的索引位置
  let minIdx = -1;
  for (let i = n; i >= 0; i--) {
    if (arr[i] != -1) {
      if (i * 2 + 1 <= n && arr[i * 2 + 1] != -1) continue;
      if (i * 2 + 2 <= n && arr[i * 2 + 2] != -1) continue;if (min > arr[i]) {
        min = arr[i];
        minIdx = i;
      }
    }
  }// path用于缓存最小叶子节点到根的路径
  const path = [];
  path.unshift(min);// 从最小值节点开始向上找父节点,直到树顶
  while (minIdx !== 0) {
    let f = Math.floor((minIdx - 1) / 2);
    path.unshift(arr[f]);
    minIdx = f;
  }
​
  console.log(path.join(" "));
});

Go

package main
​
import (
    "bufio"
    "fmt"
    "math"
    "os"
    "strconv"
    "strings"
)
​
​
​
// 判断是否叶子节点
func judge(ans []int, pos int) bool {
    return pos >= len(ans) || ans[pos] == -1
}func main() {
    scanner := bufio.NewScanner(os.Stdin)
    
    scanner.Scan()
    input := scanner.Text()
    inputs := strings.Fields(input)// 将输入的字符串转换为整数数组
    var ans []int
    for _, val := range inputs {
        num, err := strconv.Atoi(val)
        if err != nil {
            fmt.Println("输入无效")
            return
        }
        ans = append(ans, num)
    }var res []int
    pos := -1 // 最小叶子节点的位置
    minValue := math.MaxInt // 初始化最小值为最大整数// 找到最小叶子节点的位置
    for i := 0; i < len(ans); i++ {
        leftIndex := 2*(i+1) - 1 // 左子节点索引
        rightIndex := 2*(i+1)    // 右子节点索引
        if ans[i] == -1 {
            continue
        }
        // 判断当前节点是否为叶子节点
        if judge(ans, leftIndex) && judge(ans, rightIndex) {
            if ans[i] < minValue {
                pos = i
                minValue = ans[i]
            }
        }
    }// 从叶子节点回溯到根节点,收集路径上的值
    for pos != 0 {
        res = append(res, ans[pos])
        pos = (pos - 1) / 2
    }
    res = append(res, ans[0]) // 添加根节点的值// 按从根节点到叶子节点的顺序输出路径
    for i := len(res) - 1; i >= 0; i-- {
        fmt.Print(res[i])
        if i != 0 {
            fmt.Print(" ")
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

monday_CN

72小时打磨,值得1元认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值