机器学习-评价指标(准确率&召回率等)

本文探讨了准确率与召回率的概念及其应用,解释了两者之间的区别,并介绍了如何使用F-Measure作为综合评价指标来衡量检索系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

自己学习的笔记,防止以后忘了,文章部分引用了网上大佬的博客之类,在此谢谢给为大佬!


准确率与召回率

上图

图片引用链接 

  • 准确率就是检索的结果中有多少是准确的;
  • 召回率就是数据集中要被检索的数据有多少被检索出来了;

综合评价指标-F-Measure

F-Measure是准确率和召回率的加权调和平均

【F1较高时,说明实验方法比较理想】


待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值