基于小波熵和猫群优化的新冠检测及深度学习模型综述
1. 新冠检测背景与问题提出
新冠疫情全球肆虐,给全球经济和人类健康带来沉重打击。新冠是由新型冠状病毒(SARS - CoV - 2)感染引发的急性非典型呼吸道疾病,症状包括持续咳嗽、发热和呼吸困难,严重时会危及生命,且传染性强、易变异,通过飞沫传播,控制难度极大。因此,快速诊断和隔离是阻断疫情传播的关键。
目前确诊新冠的标准方法是逆转录聚合酶链反应(RT - PCR),但该方法繁琐耗时,检测速度受试剂产量影响,且假阴性率高,常需多次检测才能获得准确结果。随着现代技术发展,CT和X射线等医疗手段可获取人体器官图像,辅助医生诊断,但面对大量感染病例,仅靠医生人工诊断远远不够。
2. 新冠检测方法介绍
- 基于小波熵和猫群优化的方法
- 数据集 :使用了来自中国淮安第四人民医院的新冠CT图像数据集,包含66例感染者和66例健康个体的图像,共132个样本。每个样本包括肺部CT图像和相应的检测结果。受试者年龄在9 - 91岁之间,其中男性77人,女性55人。数据集由两名专业放射科医生筛选和标注,为每个感染者选取1 - 4张适合病变识别的CT图像,健康受试者样本从159名有体检结果的健康人中随机抽取。
- 方法
- 小波熵(Wavelet Entropy) :采用离散小波变换(DWT)进行特征提取。DWT继承了傅里叶变换的主要思想,克服了其处理不稳定信号的缺点,用有限长度