51、新冠疫情下的医学影像诊断:机器学习与人工智能的应用

新冠疫情下AI在医学影像诊断中的应用

新冠疫情下的医学影像诊断:机器学习与人工智能的应用

1. 引言

2019 年 12 月首次报告的新冠疫情迅速蔓延至全球 200 多个国家,成为严重威胁人类生命的全球性健康危机。截至 2021 年 5 月 13 日,全球确诊病例超过 1.61 亿,死亡人数达 330 万。新冠的常见症状包括发热、干咳和呼吸道问题,疫情控制很大程度上依赖于及时诊断。

传统的逆转录聚合酶链反应(RT - PCR)检测虽为筛查疑似病例的标准方法,但存在一些缺点:
- 医疗设备短缺和检测环境要求高,限制了疑似病例的快速筛查。
- 实验室检测过程耗时,通常需要 24 - 48 小时。

相比之下,胸部 X 光(CXR)和胸部计算机断层扫描(CT)对新冠感染具有较高的敏感性,且成像设备更易获取和操作,成为早期筛查的必要补充,中国最新的新冠诊疗方案(试行第八版)也强调了影像检测的价值。然而,实际的 X 光或 CT 扫描存在交叉感染风险,且大量的确诊和疑似病例使放射科医生手动分析扫描报告变得困难,导致诊断延迟。因此,结合深度学习和人工智能技术开发快速自动的分割和诊断方法至关重要。

新冠患者的胸部 CT 特征通常包括磨玻璃影(GGO)、实变以及罕见的胸腔或心包积液等,其中 GGO 是普遍特征。不同疾病阶段的 CT 成像特征有所不同:
- 早期:双肺常出现斑片状或弥漫性 GGO,病变内小血管增厚,双侧下叶胸膜下有结节状和斑片状高密度影。
- 进展期:双肺病变变化迅速,多个病变融合成大片实变,病变密度增加。
- 吸收期:病变面积轻度减小,密度缓慢降低。

胸部 X 光图像的典型特征是肺部大面积模糊,可能伴有夜间裂纹增厚和少量胸腔积液,病

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值