聚类分析:模糊分区与几何对象检测
在聚类分析领域,寻找最优模糊分区以及检测几何对象是重要的研究方向。下面将详细介绍相关的算法和方法。
1. 寻找具有椭球簇的最优模糊分区方法
当预先不知道最合适的簇数量时,可采用Mahalanobis模糊增量算法(MFInc)来寻找具有2、3等不同数量簇的最优分区。
1.1 MFInc算法步骤
- 选择初始中心 :选择一个初始中心 $\hat{c}_1 \in R^n$,例如数据集 $A$ 的均值或中位数。
- 寻找后续中心 :
- 对于第二个中心 $\hat{c} 2$,通过求解以下全局优化问题(GOP)得到近似值:
$\arg\min {x\in R^n} \Phi_2(x)$,其中 $\Phi_2(x) := \sum_{i=1}^{m} \min{|\hat{c}_1 - a_i|^2, |x - a_i|^2}$。通常执行DIRECT算法的少量迭代(如10次)即可得到足够好的初始近似值,用于GKc - means算法,以生成具有两个簇的最优模糊分区,中心为 $c_1^\star$ 和 $c_2^\star$。 - 一般地,已知 $r - 1$ 个中心 $\hat{c} 1, \ldots, \hat{c} {r - 1}$,第 $r$ 个中心 $\hat{c} r$ 通过求解以下GOP得到:
$\arg\min {x\in R^n} \Phi(x)$,其中 $\Phi(x)
- 对于第二个中心 $\hat{c} 2$,通过求解以下全局优化问题(GOP)得到近似值: