72、电力负荷预测与路面湿度分类的研究进展

电力负荷预测与路面湿度分类的研究进展

电力负荷预测研究

在电力负荷预测领域,研究人员对相关文献进行了系统回顾。此次回顾聚焦于2019 - 2021年发表在IEEE Xplore数据库上的11篇文章,这些文章均围绕LSTM在电力负荷预测中的应用展开。

  1. 数据集特征
    • 多数研究仅使用历史数据集进行预测,但也有部分研究如Hsu等人、Selvi和Mishra、Nguyen等人考虑了独立变量来训练模型。
    • 常见的数据集特征是历史负荷数据,不过加入天气等独立变量可降低模型误差。
  2. 数据集时间间隔与持续时间
    • 11篇文章中有5篇使用了1小时的数据间隔。
    • 当包含气象数据等独立变量时,2 - 5年的数据集持续时间是足够的。
  3. 训练与测试集划分
    • 多数文章将训练集和测试集进行划分,且训练集的比例大于测试集,训练样本应至少占总体数据集的60%,测试数据集不应包含在训练样本中。
  4. 评估指标
    • 大多数研究人员使用RMSE和MAPE作为评估指标,但由于数据集值未进行缩放,结果范围较大。

以下是部分文章的数据集特征和评估指标总结:
| 参考文献 | 历史电力负荷消耗 | 独立变量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值