电力负荷预测与路面湿度分类的研究进展
电力负荷预测研究
在电力负荷预测领域,研究人员对相关文献进行了系统回顾。此次回顾聚焦于2019 - 2021年发表在IEEE Xplore数据库上的11篇文章,这些文章均围绕LSTM在电力负荷预测中的应用展开。
- 数据集特征
- 多数研究仅使用历史数据集进行预测,但也有部分研究如Hsu等人、Selvi和Mishra、Nguyen等人考虑了独立变量来训练模型。
- 常见的数据集特征是历史负荷数据,不过加入天气等独立变量可降低模型误差。
- 数据集时间间隔与持续时间
- 11篇文章中有5篇使用了1小时的数据间隔。
- 当包含气象数据等独立变量时,2 - 5年的数据集持续时间是足够的。
- 训练与测试集划分
- 多数文章将训练集和测试集进行划分,且训练集的比例大于测试集,训练样本应至少占总体数据集的60%,测试数据集不应包含在训练样本中。
- 评估指标
- 大多数研究人员使用RMSE和MAPE作为评估指标,但由于数据集值未进行缩放,结果范围较大。
以下是部分文章的数据集特征和评估指标总结:
| 参考文献 | 历史电力负荷消耗 | 独立变量