
Instance Segmentation
文章平均质量分 96
实例分割
00000cj
计算机视觉,论文阅读记录
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SOLOv2(NeurIPS 2020)论文与代码解读
本文针对SOLO中存在的三个影响性能的瓶颈提出了对应的优化方法,提出了SOLOv2。原创 2024-08-07 16:46:51 · 2509 阅读 · 0 评论 -
Fast NMS和Matrix NMS解读
Fast-NMS&Matrix-NMS原创 2024-08-07 14:17:28 · 1896 阅读 · 0 评论 -
SOLO(ECCV 2020)论文与代码解读
本文提出了一种新的实例分割算法SOLO(Segment Objects by Locations), 提出了一种全新的实例分割视角,将实例分割任务转换为一个分类可以解决的问题。具体而言,SOLO通过引入“实例类别”的概念,根据实例的中心位置和大小将类别分配给每个像素,从而将实例分割任务简化为一个分类问题。这样可以直接在像素级别生成实例掩码,而无需边界框或像素嵌入学习和分组处理。原创 2024-07-29 23:03:58 · 1546 阅读 · 0 评论 -
CoordConv(NeurIPS 2018)
本文提出的CoordConv是对标准卷积层的一个简单延伸,这里只考虑二维的情况。卷积在很多任务中都表现良好可能是由于下面三个因素:学习参数较少、在GPU上计算快、具有平移不变性。CoordConv保留了前两个特性,但是允许网络根据任务需要学习保留或丢弃第三点即平移不变性。丢弃平移不变性似乎会阻碍网络学习可泛化函数的能力,但在后续实验中可以看到,分配少量的网络容量来建模问题的non-translation invariant非平移不变性可以得到一个更容易训练的模型并且泛化能力更强。原创 2024-02-21 20:44:11 · 986 阅读 · 0 评论 -
PANet(CVPR 2018)原理与代码解析
信息在神经网络中的传播方式是非常重要的。本文提出的路径聚合网络(Path Aggregation Network, PANet)旨在促进proposal-based实例分割框架中的信息流动。具体来说,通过自底向上的路径增强,利用底层中精确的定位信息来增强整个特征层次,缩短了下层与最上层之间的信息路径。本文还提出了自适应特征池化(adaptive feature pooling),它将特征网格和所有层级的特征连接起来,使每个特征层级上有用的信息直接传播到后面的proposal subnetworks。此外还增原创 2023-04-03 00:31:19 · 12838 阅读 · 0 评论