13、浮点数运算的挑战与解决方案

浮点数运算的挑战与解决方案

1. 浮点数的基本概念

浮点数在计算机中表示的是带有小数点的数值,广泛应用于科学计算、工程应用和图形处理等领域。然而,浮点数的表示和运算并非如我们想象的那样简单。由于计算机使用二进制系统,某些十进制小数无法精确表示,从而导致了一系列的问题。

1.1 浮点数的表示

浮点数的表示方式遵循IEEE 754标准,主要包括三个部分:
- 符号位 :表示数的正负。
- 指数位 :表示数的数量级。
- 尾数位 :表示数的小数部分。

符号位 指数位 尾数位
1 8 23

例如,单精度浮点数(32位)的结构如上表所示。符号位占1位,指数位占8位,尾数位占23位。

1.2 浮点数的精度问题

由于浮点数在二进制中的表示方式,某些十进制小数无法精确表示。例如,当我们设置一个浮点变量为3.1时,实际存储的值可能是3.0999999。这是因为1/10在二进制中是一个无限循环小数。

float a = 3.1;
printf("%f\n", a); // 输出 3.09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值