60、电力质量扰动分类与增量学习算法中的距离度量研究

电力质量扰动分类与增量学习算法中的距离度量研究

1. 电力质量扰动分类中的稀疏线性模型

在电力质量(PQ)扰动分类领域,研究引入了过完备表示(OR)和稀疏线性模型(SLM)的概念。通过组合不同的时频字典,为PQ扰动分类提供了新的思路。同时,还引入了Group Lasso方法,将每个字典视为SLM中的一个组。

实验结果表明,与不使用SLM的方法相比,Group Lasso显著提高了线性和非线性分类器在PQ扰动分类中的性能。由于SLM能够实现OR,确保了PQ扰动分类的高性能,这一框架消除了对于不同类型失真应使用何种字典的不确定性。

以下是不同分类器在有无Group Lasso情况下,使用不同字典进行分类的性能表现:
| 分类器 | 字典 | GT + 谐波 | MHWT + 谐波 | ST + 谐波 | GWST + 谐波 |
| — | — | — | — | — | — |
| 无SLM | 1 - NN | 0.8710 ± 0.0149 | 0.6311 ± 0.0216 | 0.8322 ± 0.0175 | 0.7292 ± 0.0159 |
| | 3 - NN | 0.8592 ± 0.0102 | 0.6360 ± 0.0197 | 0.8261 ± 0.0186 | 0.7246 ± 0.0166 |
| | LDC | 0.5956 ± 0.0199 | 0.5363 ± 0.0203 | 0.6560 ± 0.0204 | 0.5121 ± 0.0296 |
| | QDC | 0.8053 ± 0.0122 | 0.5808 ± 0.0327 | 0.7200 ± 0.0184 | 0.6550 ±

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值