21、椭圆曲线密码系统的功耗分析与智能卡应用研究

椭圆曲线密码系统的功耗分析与智能卡应用研究

1. 椭圆曲线密码系统的功耗分析

在椭圆曲线密码系统(ECC)中,蒙哥马利模乘和模平方运算存在功耗差异。通过对ECC协处理器中的蒙哥马利模乘电路进行网表时序仿真,使用90 - nm CMOS标准单元库,并通过统计每200ps内门的开关次数来估算功耗。

仿真结果显示,在图3中,虚线表示步骤2.2中i = 2时,SQR和MUL对10000个随机输入的平均开关次数差异;实线表示两个MUL对10000个随机输入的差异。虚线在第3和第4个周期(即j = 2和3)出现尖锐峰值。

这种功耗差异可应用于两种差分功耗分析(DPA)对策,即统一加法公式和蒙哥马利形式曲线上的蒙哥马利阶梯。

1.1 对统一加法公式的攻击

在使用统一加法公式进行标量乘法dP(d为秘密标量,P为点)时,可利用模乘和模平方的可区分性进行攻击。在仿射坐标版本的统一加法公式中,关注模乘x1x0(记为MUL1)。当x1 ≠ x0时,公式执行ECADD;当x1 = x0时,执行ECDBL。

若攻击者能区分MUL1是模乘还是模平方,就能知道对应的操作是ECADD还是ECDBL,从而检测出秘密标量d的位信息。即使采用随机曲线同构作为DPA对策,MUL1的性质依然保持。

以下是搜索d的位的具体算法:
1. 测量dP的功耗轨迹L次并求平均值。
2. 提取公式第i次执行MUL1时的平均轨迹Ci(1 ≤ i ≤ m)。
3. 若∆Ci = Ci - C1(2 ≤ i ≤ m)出现峰值,则假设为“ A”(ECADD);否则假设为“ D”(ECDBL)。
4. 将“ DA”视为位“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值