人脸检测Retinaface算法原理详解

RetinaFace是CVPR 2020提出的单阶段人脸检测模型,结合多任务学习策略,预测人脸评分、框、关键点及3D位置。它在WIDER FACE数据集上表现出色,且能实现实时运行。本文详细讲解其原理,包括数据集、网络结构和损失函数,帮助理解人脸检测和SSD算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请添加图片描述

🤗关注公众号funNLPer白嫖畅读全文🤗

论文:RetinaFace: Single-stage Dense Face Localisation in the Wild
代码:official Implemented by mxnet detection/retinaface
代码:unofficial implemented by toch

RetinaFaces是一个单阶段人脸检测SOTA模型,被CVPR 2020 所接收。在前一篇文章 SSD目标检测算法详解 中,我们介绍了SSD算法的基本原理,本文虽然是人脸检测,但是其中的原理很大一部分与SSD算法都是相同的。本文通过对RetinaFace

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值