cuda编程笔记(12)--学习cuFFT的简单使用

cuFFT 是 NVIDIA 提供的 GPU 加速快速傅里叶变换(FFT)库,类似于 CPU 端的 FFTW,但利用 CUDA 并行计算大幅提高性能。

它可以处理 一维、二维、三维的 FFT,支持 复数到复数(C2C)、实数到复数(R2C)、复数到实数(C2R) 的变换,常用于信号处理、图像处理、频谱分析等。

如果用VS写cuda,记得链接器的输入加上cufft.lib

说实话,这一节我也不太懂,因为我之前没接触过傅里叶变换;如果专业的人应该能看懂一些函数的参数选项是啥意思吧

什么是 FFT?

  • FFT(Fast Fourier Transform):把信号从 时域(time domain) 转换到 频域(frequency domain)

  • 在图像处理中,FFT 用于:

    • 滤波(高通、低通)

    • 卷积加速(卷积定理:卷积 = 频域乘法)

  • 在信号处理中,FFT 用于:

    • 频谱分析(检测信号频率成分)

    • 滤波、调制

cuFFT 的 API 核心流程

  1. 创建计划(Plan)

    • cufftPlan1d()cufftPlan2d()cufftPlanMany() 创建 FFT 执行计划

  2. 执行 FFT

    • cufftExecC2C()cufftExecR2C()cufftExecC2R() 执行

  3. 销毁计划

    • cufftDestroy() 释放资源

cuFFT API 的常见类型

cufftHandle

  • 定义typedef int cufftHandle;

  • 作用:FFT 计划(Plan)的句柄,类似于 cuBLAS 的 cublasHandle_t

  • 用法

    • 创建计划:cufftPlan1d(&plan, N, CUFFT_C2C, 1);

    • 使用计划执行:cufftExecC2C(plan, ...)

    • 销毁计划:cufftDestroy(plan);

📌 一个计划可以重复使用,只要尺寸(N)和类型一致,执行多次 FFT 不需要重新创建。

cufftResult

  • 定义:枚举类型,表示 cuFFT API 的返回状态。

  • 常用值

    • CUFFT_SUCCESS:成功

    • CUFFT_INVALID_PLAN:无效计划

    • CUFFT_ALLOC_FAILED:内存分配失败

    • CUFFT_EXEC_FAILED:执行失败

    • CUFFT_INVALID_VALUE:参数错误

  • 用法

cufftResult status = cufftPlan1d(&plan, N, CUFFT_C2C, 1);
if (status != CUFFT_SUCCESS) {
    printf("Error creating plan!\n");
}

cufftComplex / cufftDoubleComplex

  • 定义

typedef float2  cufftComplex;       // 单精度复数 (float)
typedef double2 cufftDoubleComplex; // 双精度复数 (double)
  • 成员

    • .x:实部

    • .y:虚部

  • 用法

cufftComplex val;
val.x = 1.0f; // 实部
val.y = 0.5f; // 虚部

cufftType

  • 定义:FFT 类型,决定输入/输出数据格式。

  • 常用值

    • CUFFT_R2C:实数 → 复数

    • CUFFT_C2R:复数 → 实数

    • CUFFT_C2C:复数 → 复数

    • CUFFT_D2Z:双精度实数 → 双精度复数

    • CUFFT_Z2D:双精度复数 → 双精度实数

其他重要概念

  • cufftRealfloat,用于实数输入。

  • cufftDoubleRealdouble,用于双精度实数输入。

  • CUFFT_FORWARD / CUFFT_INVERSE:正向/逆向变换。

创建计划

cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch);
cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type);
  • nx, ny:信号长度

  • type

    • CUFFT_C2C:复数→复数

    • CUFFT_R2C:实数→复数

    • CUFFT_C2R:复数→实数

  • batch:批处理个数,一次要并行处理多少个 独立的数据集。总输入的大小为nx*batch

执行 FFT

复数 ↔ 复数

cufftResult cufftExecC2C(cufftHandle plan, cufftComplex *idata, cufftComplex *odata, int direction);
  • idata:输入数据(GPU)

  • odata:输出数据(GPU)

  • direction

    • CUFFT_FORWARD(正变换)

    • CUFFT_INVERSE(逆变换)

实数 → 复数

cufftResult cufftExecR2C(cufftHandle plan,
                         cufftReal *idata,
                         cufftComplex *odata);

复数 → 实数

cufftResult cufftExecC2R(cufftHandle plan,
                         cufftComplex *idata,
                         cufftReal *odata);

双精度版本

  • cufftExecZ2Z(复数 ↔ 复数)

  • cufftExecD2Z(实数 → 复数)

  • cufftExecZ2D(复数 → 实数)

方向参数(direction)

仅在 C2C / Z2Z 中使用:

  • CUFFT_FORWARD(前向FFT:时域→频域)

  • CUFFT_INVERSE(逆向FFT:频域→时域)

绑定 CUDA Stream

cuFFT 和 cuBLAS 一样,也可以通过 绑定 CUDA Stream 来实现异步执行,从而和其他内核或库函数并行化

cufftResult cufftSetStream(cufftHandle plan, cudaStream_t stream);
  • plan:FFT 计划(cufftHandle

  • stream:CUDA 流(cudaStream_t

  • 默认情况下,cufftExec* 是在 默认流stream 0)上执行。

  • 如果绑定到自定义流,那么:

    • FFT 调用变为异步,不会阻塞主机线程。

    • 可以在不同流上运行多个 FFT 并行处理

    • 还能和其他 GPU 任务(比如内核计算、数据拷贝)重叠执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值