冒泡排序和快速排序算法
老师上课的PPT算法
一、冒泡排序*(Bubble Sort)*
算法复杂度:
打开外循环,当j=n时,内循环体运行n-1遍;
当j=n-1时,内循环体运行n-2遍;
循环体即比较交换共进行了(n-1)+(n-2)+…+1,时间复杂度为O(n^2)。
空间复杂度O(1)
代码
代码如下(示例):
for (i=1; i<n; i++)
if (a[i-1]>a[i])
{ tmp = a[i-1]; a[i-1] = a[i]; a[i] = tmp; }
//然后最后元素不参与,再次从头冒泡比较,将次大元素移到序列尾部。反复如此。
void bubbleSort(int a[], int n)
{ int i,j,tmp; int changeFlag=1;
for (j=n; j>1; j--)
{ if (!changeFlag) break; //上一轮无交换
changeFlag = 0;
for (i=1; i<j; i++)
if (a[i-1]>a[i])
{ tmp = a[i-1]; a[i-1] = a[i]; a[i] = tmp; changeFlag = 1; }
}
}
//加changeFlag标志,当某趟比较无交换发生,表明序列有序,排序结束。
一、快速排序(Quick Sort)
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
快速排序的平均时间复杂度也是O(nlog2n);
空间复杂度O(1)
// Quick_Sort.cpp : Defines the entry point for the application.
// 快速排序算法
#include<iostream>
using namespace std;
//快速排序算法(从小到大)
//arr:需要排序的数组,begin:需要排序的区间左边界,end:需要排序的区间的右边界
void quickSort(int *arr,int begin,int end)
{
//如果区间不只一个数
if(begin < end)
{
int temp = arr[begin]; //将区间的第一个数作为基准数
int i = begin; //从左到右进行查找时的“指针”,指示当前左位置
int j = end; //从右到左进行查找时的“指针”,指示当前右位置
//不重复遍历
while(i < j)
{
//当右边的数大于基准数时,略过,继续向左查找
//不满足条件时跳出循环,此时的j对应的元素是小于基准元素的
while(i<j && arr[j] > temp)
j--;
//将右边小于等于基准元素的数填入右边相应位置
arr[i] = arr[j];
//当左边的数小于等于基准数时,略过,继续向右查找
//(重复的基准元素集合到左区间)
//不满足条件时跳出循环,此时的i对应的元素是大于等于基准元素的
while(i<j && arr[i] <= temp)
i++;
//将左边大于基准元素的数填入左边相应位置
arr[j] = arr[i];
}
//将基准元素填入相应位置
arr[i] = temp;
//此时的i即为基准元素的位置
//对基准元素的左边子区间进行相似的快速排序
quickSort(arr,begin,i-1);
//对基准元素的右边子区间进行相似的快速排序
quickSort(arr,i+1,end);
}
//如果区间只有一个数,则返回
else
return;
}
int main()
{
int num[12] = {23,45,17,11,13,89,72,26,3,17,11,13};
int n = 12;
quickSort(num,0,n-1);
cout << "排序后的数组为:" << endl;
for(int i=0;i<n;i++)
cout << num[i] << ' ';
cout << endl;
system("pause");
return 0;}