奶牛吃草
时间限制:4 sec
空间限制:256 MB
问题描述
有一只奶牛在一条笔直的道路上(可以看做是一个数轴)。初始,它在道路上坐标为 K 的地方。
这条道路上有 n 棵非常新鲜的青草(编号从 1 开始)。其中第 i 棵青草位于道路上坐标为 x[i] 的地方。贝西每秒钟可以沿着道路的方向向前(坐标加)或向后(坐标减)移动一个坐标单位的距离。
它只要移动到青草所在的地方,就可以一口吞掉青草,它的食速很快,吃草的时间可以不计。
它要吃光所有的青草。不过,青草太新鲜了,在被吞掉之前,暴露在道路上的每棵青草每秒种都会损失一单位的口感。
请你帮它计算,该怎样来回跑动,才能在口感损失之和最小的情况下吃掉所有的青草。
输入格式
第一行两个用空格隔开的整数 n,k,分别表示青草的数目和奶牛的初始坐标。
第 2 行到第 n+1 行,第 i+1 行有一个整数 x[i],描述第 i 棵青草的坐标。
输出格式
一行一个整数,表示吃掉所有青草的前提下,最小损失的口感之和。保证答案在 32 位有符号整数的范围内。
样例输入
4 10
1
9
11
19
样例输出
44
样例解释
先跑到 9,然后跑到 11,再跑到 19,最后到 1,可以让损失的口感总和为 29+1+3+11=44。可以证明不存在比这更优的解。
数据范围
对于 50% 的数据,保证 1≤n≤4,1≤k,x[i]≤20。 对于 80% 的数据,保证 1≤n≤100。 对于 100% 的数据,保证 1≤n≤1000,1≤k,x[i]≤10^6。
提示
[我们先从另一个角度看答案,即损失的总口感:从初始状态到奶牛吃掉第 1 棵草之间的时间(我们在下面把它叫做第 1 段时间),所有的 n 棵青草都在流失口感;……;从奶牛吃掉第 i 棵草到它吃掉第 i+1 棵草之间的时间(我们在下面把它叫做第 i+1 段时间),还没有被吃掉的 n-i 棵草都在流失口感;……]
[于是我们发现,第 i 段时间对答案的贡献,为这段时间的长度与 n-i+1 的乘积。]
[接着,我们再来关注最优策略。吃完一棵草后(包括初始时),奶牛的最优策略一定是直奔另一棵草。]
[由于奶牛不会飞,所以奶牛走过的所有路一定是一段连续的区间。]
[显然地,被奶牛经过过的地方,按最优策略,一定不会留下青草。]
[所以我们可以**将所有青草的坐标排序**(下面我们都使用排完序后的编号),然后用 dp[l][r][j] 表示吃完 [l,r] 范围内的青草时的最小答案,j 只有 0,1 两种取值,分别表示奶牛吃完最后一棵草停在青草 l 还是 r 上(只有可能是这两种情况,否则与上面的结论矛盾)。]
[于是我们就可以轻易地设计出状态转移方程:]
[dp[l][r][0]=min(dp[l+1][r][0]+(n-r+l)*abs(x[l]-x[l+1]),dp[l+1][r][1]+(n-r+l)*abs(x[l]-x[r]))]
[dp[l][r][1]=min(dp[l][r-1][1]+(n-r+l)*abs(x[r]-x[r-1]),dp[l][r-1][0]+(n-r+l)*abs(x[r]-x[l]))]
[边界为:dp[i][i][j]=abs(x[i]-k)*n(对于所有1<=i<=n,j=0,1)]
[友情提示:请注意枚举顺序。]
另外,为了帮助大家完成题目,我们提供了只包含了输入输出功能的程序模板,也提供了含有算法的大部分实现细节的程序。
你可以根据自己的实际情况,在这些程序的基础上进行作答,或不参考这些程序,这将与你的得分无关。
这些程序可以从【这里】下载。
Source
[来自 USACO 月赛(具体场次已无从考究)]