21、基于深度图神经网络的会话推荐系统方法解析

基于深度图神经网络的会话推荐系统方法解析

1. 图神经网络在会话推荐系统中的应用概述

在会话推荐系统中,图神经网络的应用面临着一些挑战和机遇。传统方法在处理相邻节点时往往一视同仁,而注意力机制可用于区分邻居的重要性。不过,这些方法在消息传递过程中采用排列不变的聚合函数,忽略了邻域中项目的顺序,可能导致信息丢失。

会话推荐系统使用不同类型的图神经网络时,主要面临三个挑战:
- 图构建 :需要将序列数据转换为序列图,要确定为每个序列独立创建子图是否足够,还是在几个连续项目之间添加边,或者仅考虑两个连续项目之间的边。
- 信息传播 :要确定哪种传播机制更适合记录过渡模式,是否需要识别相关项目的顺序。
- 顺序兴趣 :需要将项目表示集成到序列中以获得用户的时间偏好,是简单使用基于注意力的池化,还是使用循环神经网络结构来改善顺序时间模式。

不同的解决方案会催生新的方法,下面将介绍一些相关的研究。

1.1 SR - GNN:基于图神经网络的会话推荐

Wu 等人提出了 SR - GNN(Session - based Recommendation with Graph Neural Networks),将会话序列建模为图结构数据。其主要步骤如下:
1. 图建模 :将会话序列建模为带权有向图,每个会话序列视为一个子图。图中每个节点是一个项目,两个节点之间的边表示用户点击两个项目的顺序。边的权重根据边的出现次数除以起始节点的出度计算。
2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值