基于深度图神经网络的会话推荐系统方法解析
1. 图神经网络在会话推荐系统中的应用概述
在会话推荐系统中,图神经网络的应用面临着一些挑战和机遇。传统方法在处理相邻节点时往往一视同仁,而注意力机制可用于区分邻居的重要性。不过,这些方法在消息传递过程中采用排列不变的聚合函数,忽略了邻域中项目的顺序,可能导致信息丢失。
会话推荐系统使用不同类型的图神经网络时,主要面临三个挑战:
- 图构建 :需要将序列数据转换为序列图,要确定为每个序列独立创建子图是否足够,还是在几个连续项目之间添加边,或者仅考虑两个连续项目之间的边。
- 信息传播 :要确定哪种传播机制更适合记录过渡模式,是否需要识别相关项目的顺序。
- 顺序兴趣 :需要将项目表示集成到序列中以获得用户的时间偏好,是简单使用基于注意力的池化,还是使用循环神经网络结构来改善顺序时间模式。
不同的解决方案会催生新的方法,下面将介绍一些相关的研究。
1.1 SR - GNN:基于图神经网络的会话推荐
Wu 等人提出了 SR - GNN(Session - based Recommendation with Graph Neural Networks),将会话序列建模为图结构数据。其主要步骤如下:
1. 图建模 :将会话序列建模为带权有向图,每个会话序列视为一个子图。图中每个节点是一个项目,两个节点之间的边表示用户点击两个项目的顺序。边的权重根据边的出现次数除以起始节点的出度计算。
2.