基于线性规划的多车辆路径规划
1. 问题描述
1.1 状态空间模型
考虑一个描述友好和敌方资源在由多个区域组成的战场上移动和交战的模型。战场被划分为区域集合 $S$,资源集合 $R$ 在离散时间内演化。
车辆被表示为资源类型 $r_j \in R$,其在区域 $s_i \in S$ 的数量水平定义为 $x_{s_i,r_j} \in B \triangleq {0, 1}$,其中资源水平为 ‘1’ 表示车辆所在区域,否则为 ‘0’。每个资源类型 $r_j \in R$ 的状态为:
[
x_{r_j} =
\begin{bmatrix}
x_{s_1,r_j} & x_{s_2,r_j} & \cdots & x_{s_{n_s},r_j}
\end{bmatrix}^T
\in B^{n_s}
]
其中 $n_s$ 是 $S$ 中区域的总数。因此,$n_r$ 个车辆的集合 $R$ 的状态为:
[
x =
\begin{bmatrix}
x_{r_1}^T & x_{r_2}^T & \cdots & x_{r_{n_r}}^T
\end{bmatrix}^T
\in B^{n_x}
]
其中 $n_x = n_s n_r$ 是状态的总数。
资源水平的变化代表车辆的移动,车辆可以留在同一区域或移动到相邻区域,区域内的移动不进行建模。控制动作包括每个资源类型 $r_j \in R$ 从区域 $s_i \in S$ 到相邻区域 $s_k \in N(s_i,