- 博客(225)
- 收藏
- 关注
原创 RAG文档问答与向量化匹配-JAVA
本文介绍了一个基于Java实现的RAG(检索增强生成)系统,该系统结合bge-m3模型完成文档向量化和相似度匹配功能。系统包含文档读取、文本分片、向量化、相似度计算和结果整合五大模块,支持TXT、DOCX、DOC和PDF等多种格式文档处理。通过多线程优化和合理文本分片策略,系统能高效完成文档向量化与相似度检索。实现代码展示了与Ollama服务的交互、余弦相似度计算等核心功能,可应用于智能客服、知识库检索等场景,具有灵活的参数调整空间。
2025-07-16 16:02:30
556
1
原创 RAG的文档问答系统-PYTHON
本文介绍了一个基于RAG的文档问答系统实现方案,该系统能处理TXT、PDF、DOC/DOCX等多种文档格式。系统包含四个核心模块:文档处理模块使用pdfplumber等库解析不同格式文件;文本分片模块采用基于句子的智能分割策略;向量检索模块利用Ollama本地模型生成嵌入向量并计算余弦相似度;问答生成模块整合检索结果调用大语言模型生成回答。系统支持本地化部署,具有语义级检索能力,通过并行处理和缓存机制优化性能,可扩展支持更多文档格式和混合检索方式。
2025-07-16 15:56:41
681
1
原创 使用Selenium自动化获取抖音创作者平台视频数据
本文介绍了使用Python Selenium库自动化采集抖音创作者平台视频数据的方法。通过设置独立Chrome用户数据目录保存登录状态,利用CSS选择器和XPath定位元素,结合显式等待提高稳定性。代码实现了视频标题、发布时间和播放量等关键数据的采集,并加入了异常处理机制。该方法可用于内容分析、效果追踪和自动化报告生成,但需注意页面结构变化和反爬机制。文章还提出了数据存储、定时采集和可视化展示等扩展思路,为短视频创作者提供了一套实用的数据采集解决方案。
2025-07-11 14:17:11
781
原创 基于Selenium和FFmpeg的全平台短视频自动化发布系统
本文介绍了一个基于Python的短视频自动化处理与多平台发布系统。该系统利用Selenium实现浏览器自动化操作,FFmpeg进行专业视频处理,主要功能包括:自动剪辑视频、添加动态水印、智能生成多样化标题和描述,并支持一键发布到抖音、快手、小红书等多个平台。系统创新性地采用Chrome用户数据隔离技术管理多账号,确保操作安全,同时通过随机化算法实现内容差异化。部署环境需Python3.8+、Chrome浏览器和FFmpeg工具。该系统大幅提升了短视频运营效率,未来可扩展AI内容生成等智能化功能。
2025-07-11 14:14:32
1214
原创 用Python制作抖音风格短视频:从图片到精美视频的完整指南
本文介绍了使用Python创建抖音风格短视频的自动化方案。项目利用OpenCV处理图片、MoviePy编辑视频,实现图片合成、过渡效果添加和背景音乐匹配等功能。核心代码展示了图片调整、视频剪辑和音频处理的关键步骤,并提供了使用方法示例。文章还提出动态时间分配、多样化过渡等优化建议,以及解决常见问题的方案。该框架适合批量制作社交媒体内容,并可通过添加滤镜、字幕等功能进一步扩展。
2025-07-11 14:04:27
906
原创 PYTHON从入门到实践11-测试函数与类
Python测试技术摘要:本文介绍了Python代码测试的3种核心方法。1) 内置assert语句用于简单验证,示例演示了加法函数的测试用例;2) pytest测试框架提供更强大的功能,能自动发现并执行测试,生成清晰报告;3) pytest.fixture装饰器用于创建可复用的测试环境,示例展示了员工类及其加薪方法的测试。文章还包含测试类编写的最佳实践,强调测试独立性和命名规范。这些技术组合使用可有效提升代码质量和开发效率,其中pytest因其丰富功能成为Python项目测试的首选工具。
2025-07-05 15:54:50
842
原创 PYTHON从入门到实践11-控制台实现商品管理系统
本文介绍了一个基于Python面向对象编程实现的简易商品管理系统。系统包含商品增删改查等核心功能:商品类(Goods)封装名称和价格属性;添加商品时检查重复;删除和修改功能提供明确反馈;查询功能格式化输出商品信息。主程序采用循环菜单交互方式,通过用户输入调用相应功能。该系统适合Python初学者学习面向对象编程和基础业务逻辑实现,后续可扩展数据持久化、图形界面等更多功能。文章详细解析了各功能代码实现,并给出了完整代码示例和使用演示。
2025-07-03 15:12:26
763
原创 PYTHON从入门到实践10-文件操作与异常
本文介绍了Python文件操作与异常处理的核心知识。主要内容包括:1)文件路径类型(绝对路径和相对路径);2)文件读写操作(open()函数的使用方法、with语句的上下文管理);3)JSON文件处理(json模块的loads/dumps方法);4)异常处理机制(try-except结构)。文章还提供了文件操作的最佳实践,如编码规范、资源管理和大文件处理技巧。这些内容是Python开发的基础技能,能帮助开发者编写更健壮、安全的文件操作代码。
2025-06-29 22:42:10
786
原创 PYTHON从入门到实践9-类和实例
本文介绍了Python面向对象编程(OOP)的基础知识。通过创建Student类示例,展示了类定义、对象创建及方法调用。重点讲解了OOP三大特性:封装(使用_和__控制属性访问)、继承(CollegeStudent继承Student)和多态(同一方法不同实现)。文章指出现代编程倾向"组合优于继承",并推荐使用@property装饰器等Python特有功能。最后强调应根据实际需求选择编程范式,遵循Python"简单优于复杂"的哲学。
2025-06-29 16:21:41
1091
原创 PYTHON从入门到实践8-函数与返回值
Python函数编程基础: 函数定义使用def关键字,可包含参数和返回值 无参函数示例:my_function()直接打印"Hello World" 带参函数示例:my_function_name(name)实现个性化问候 返回值函数示例:my_function_sum(a,b)返回两数之和 格式化字符串返回:function_say(a,b)返回包含参数的描述语句 if __name__ == '__main__'控制脚本直接运行时的执行逻辑 函数是代码复用的基本单元,通过合理组织可提
2025-06-29 11:04:21
385
原创 PYTHON从入门到实践7-获取用户输入与while循环
本文介绍了Python中获取用户输入、数据类型转换和while循环的基础知识。通过input()函数获取用户输入,默认返回字符串类型;使用int()等函数进行数据类型转换;while循环适用于不确定循环次数的场景。文章还提供了实际应用中的注意事项,包括输入验证、循环退出条件和用户体验优化。这些内容是Python交互式编程的基础,掌握它们有助于开发更健壮的程序。
2025-06-28 21:58:21
633
原创 PYTHON从入门到实践6-字典
本文介绍了Python字典的基本操作与实用技巧。字典作为键值对数据结构,支持增删改查操作,适合存储对象数据并与JSON互转。通过示例展示了字典遍历、体温检测应用,以及f-string格式化输出。文章还提及字典常用方法如get()、update()等,强调其在数据处理、JSON交互等方面的重要作用。掌握字典使用是Python开发的必备技能。
2025-06-25 23:21:01
636
原创 PYTHON从入门到实践5-条件判断
本文介绍了Python中条件测试与if语句的基本使用。主要内容包括:1)通过比较变量值展示if-else结构;2)演示条件测试返回布尔值的特性;3)详细讲解and、or、not三种逻辑运算符的使用方法;4)说明if语句的多种形式结构;5)给出实际应用建议,如简化复杂条件、注意运算符优先级等。文章强调条件测试是Python编程的基础,合理运用逻辑运算符可以构建强大的判断逻辑,并提醒读者注意条件测试总是返回布尔值的特性。
2025-06-25 23:06:48
318
原创 PYTHON从入门到实践5-列表操作
Python列表全面解析:从基础操作到实际应用 本文详细介绍了Python列表的核心特性和操作方法。主要内容包括:1) 列表作为可变序列的基本特性,支持动态修改;2) 遍历列表的多种方式;3) 使用range()创建数值列表;4) 列表常用操作总结(添加/删除元素、排序、切片等);5) 高效的列表推导式用法;6) 列表操作的性能考虑;7) 实际应用案例。文章通过代码示例展示了如何创建、修改和操作列表,并强调了列表在数据处理、Web开发等领域的重要性。本文适合Python初学者系统学习列表这一重要数据结构。
2025-06-25 22:54:40
871
原创 PYTHON从入门到实践4-数据类型
Python基础入门:字符串、数字运算与数据类型 本文介绍了Python编程的三大基础内容:字符串操作展示了f-string格式化字符串的使用方法;数字运算部分讲解了基本算术和math模块的应用;数据类型则重点说明了数字类型及其转换。通过示例代码演示了字符串格式化输出、对数计算、类型转换等操作,同时强调了注释的重要性。这些基础知识是学习Python的第一步,为后续掌握更高级概念奠定了基础。
2025-06-24 23:36:08
680
原创 PYTHON从入门到实践3-变量
Python变量基础与命名规范 本文介绍了Python变量的基本概念和使用方法。变量作为存储数据的容器,无需预先声明类型即可直接赋值。文章重点讲解了变量命名规则:只能包含字母、数字和下划线,且不能以数字开头或使用关键字。推荐使用下划线命名法(如user_name),并强调命名应具有描述性。通过示例展示了变量在存储用户输入、数学计算和程序流程控制中的应用。最后提出了变量使用的最佳实践,包括初始化变量、避免魔法数字、保持命名一致性和合理作用域等建议。正确使用变量是编写高质量Python代码的基础。
2025-06-24 23:16:20
355
原创 PYTHON从入门到实践2-环境配置与字符串打印用法
Python中print()函数的用法与技巧:从基础字符串输出到多行文本处理。文章首先介绍Python解释器选择(CPython、Anaconda等),然后讲解print()基本用法,包括多参数输出和分隔符设置。重点剖析多行字符串的三种处理方法:三引号保留格式、转义字符\n以及隐式拼接,并演示了结合f-string的格式化输出。最后分享进阶技巧如控制输出结尾、输出到文件等实用功能,适用于日志、数据报告等多种场景。掌握这些技巧能显著提升文本输出效率与美观度。
2025-06-24 23:06:19
604
原创 微信朋友圈文案+图片获取与智能分析
摘要: 本文介绍了一个基于Python的微信朋友圈数据抓取与分析工具,主要实现朋友圈文案和图片的自动化获取与智能处理。项目通过wxautox库操作微信客户端,遍历朋友圈内容并保存图片,利用JSON文件实现历史记录去重,结合多线程(Queue/threading)提升效率,并集成豆包大模型API分析车辆相关信息。系统还包含OSS图片上传、结构化数据存储等功能,适用于二手车等行业信息收集。优化方向包括提升分析维度、改进图片处理效率等,同时强调需遵守微信协议和隐私保护。150字
2025-06-20 11:28:34
1137
1
原创 基于Python、大模型和微信自动化的朋友圈车源信息抓取与分析系统
摘要: 本文提出了一种基于Python的微信朋友圈车源信息抓取与分析系统。该系统通过wxautox库实现微信自动化控制,结合大模型技术进行车源信息识别和结构化提取,包含朋友圈抓取、信息识别、数据处理和消息推送等模块。系统采用多线程任务队列提高处理效率,并记录历史数据避免重复处理。实际应用表明,该系统能有效提升二手车商获取车源信息的效率,且该技术框架稍加调整即可应用于其他社交平台信息采集场景。文中强调了遵守微信使用协议和数据合规的重要性。
2025-06-15 14:30:14
897
1
原创 Vue3+Element Plus表单验证实战:从零实现用户管理
本文介绍了在Vue3项目中使用ElementPlus实现表单验证的完整流程。通过一个用户管理模块的实战案例,详细讲解了表单验证的基础配置、组件绑定、执行流程及其常见问题解决方案。重点包括:表单数据和验证规则的绑定关系、表单验证的触发方式、验证结果的回调处理,以及动态表单验证和自定义验证规则的实现方法。文章还提供了后台接口设计建议,并强调通过destroy-on-close属性解决表单残留问题。最后,总结了表单验证的核心要点,为开发者提供了完整的表单验证实现方案。
2025-06-07 20:50:35
1524
原创 微信朋友圈消息实时获取与大模型智能分析
本文介绍了一个基于Python的微信朋友圈自动化分析系统,主要包含两个模块:使用wxautox库获取朋友圈数据,以及调用豆包大模型API进行智能分析。系统能够自动采集朋友圈内容并格式化为JSON数据,然后通过定制化提示词让大模型对内容进行分类分析,如识别车源信息等商业内容。文章详细说明了技术实现方案,包括数据获取流程、API调用方法以及系统整合方案,同时强调了隐私保护、API调用限制等注意事项。该系统可用于商业信息监控、内容分类等应用场景,开发者可根据需求扩展更多功能。
2025-06-06 22:53:35
940
原创 SpringBoot3项目架构具体代码实现
这是一篇关于Spring Boot项目配置的技术文档,主要包含以下内容: Maven项目配置(pom.xml): 使用Spring Boot 3.4.3作为父项目 包含Web、MyBatis-Plus、MySQL、Hutool、POI、JWT等主要依赖 配置Java 21为开发版本 配置文件(application.properties): 设置服务器端口和SSL证书 配置MySQL数据库连接 邮件服务器设置 MyBatis和MyBatis-Plus相关配置 文件上传限制等 核心代码实现: 启动类配置 跨域
2025-06-06 11:12:08
249
原创 SpringBoot3项目架构设计与模块解析
这是一个基于SpringBoot3构建的企业级后台管理系统,从项目结构来看,系统采用了经典的分层架构设计,包含完整的控制器层、服务层、数据访问层和实体层。项目整合了Web开发、数据库访问、权限控制等核心功能模块。这个SpringBoot3项目展示了标准的后端架构设计,分层明确、模块划分合理。通过自定义配置和工具类增强了框架的扩展性,安全设计和异常处理也较为完善。
2025-06-05 16:19:33
729
原创 Vue3+SpringBoot全栈开发:从零实现增删改查与分页功能
本文详细介绍了基于Vue3和SpringBoot实现前后端分离的CRUD开发方案。前端采用Vue3+ElementPlus+Axios技术栈,后端使用SpringBoot+MyBatis-Plus框架,重点解决了跨域问题,并封装了Axios请求。文章详细演示了分页查询、条件筛选功能的实现,包括后端分页逻辑和前端分页组件,以及完整的CRUD操作(新增、更新、删除)。此外还提供了前端界面优化建议,如表格表单组件实现,并给出了性能优化方案(Redis缓存、防抖处理等)和常见问题解决方案。该方案为企业级应用开发提供
2025-06-01 17:05:40
1103
原创 SpringBoot整合MyBatis完整实践指南
本文介绍了基于SpringBoot和MyBatis的企业级应用开发全流程。首先详解了MySQL环境配置与用户表设计,使用utf8mb4字符集支持完整Unicode。然后指导SpringBoot项目搭建,包括MyBatis依赖引入和数据库连接配置。重点说明了实体类设计(使用Lombok简化代码)和Mapper接口编写,并演示了MyBatisPlus分页插件的配置方法。最后展示了Controller层的实际应用示例,通过QueryWrapper构建查询条件。文章还总结了MyBatisPlus在简化CRUD操作。
2025-05-31 22:50:03
673
原创 SpringBoot3-从环境搭建到异常处理的完整指南
本文详细介绍了SpringBoot3项目的搭建过程和核心功能实现。通过合理的项目结构设计和统一的异常处理机制,可以大大提高项目的可维护性和开发效率。SpringBoot3在性能、安全性和易用性方面都有显著提升,是开发现代Java Web应用的理想选择。
2025-05-31 21:23:32
881
原创 PYTHON通过VOSK实现离线听写支持WINDOWS&Linux_X86架构
本文介绍了基于Python的离线语音识别系统实现方案,使用Vosk和PyAudio库构建无需网络连接的语音转文字功能。该系统采用Vosk开源引擎(支持多语言、预训练模型)和PyAudio音频处理库,通过设置16kHz采样率的音频输入流,实时处理语音数据。文章详细解析了音频输入配置、Vosk模型加载、语音识别核心逻辑等关键技术实现,并探讨了实时音频流处理、识别状态管理等要点。该系统适用于智能家居、车载助手等离线场景,可根据需求选择模型大小优化性能。方案兼顾隐私保护和本地化处理优势,为开发者提供了完整的离线语音
2025-05-30 16:09:27
854
原创 PYTHON调用讯飞C/C++动态库实现离线语音合成并且实时播放
本文介绍了使用Python结合科大讯飞离线SDK实现本地语音合成(TTS)的方法。离线TTS具有响应快、隐私性好等优势。文章详细讲解了环境准备、核心代码实现和关键技术点:通过ctypes调用DLL、音频流处理及参数编码。该系统适用于嵌入式、无网络或对隐私要求高的场景,并提供了性能优化、语音定制等扩展方向。完整的实现方案展示了如何从登录认证到音频播放的全流程,为开发者提供了离线语音合成的实用解决方案。
2025-05-30 11:04:39
907
原创 PYTHON调用讯飞唤醒实现麦克风说话机器人离线唤醒
本文介绍了基于Python和讯飞语音SDK的语音唤醒系统实现方法。系统采用16kHz单声道音频输入,通过讯飞DLL接口实现唤醒词检测,包含完整的开发流程:从环境配置(Python3.x、PyAudio)、SDK初始化(APPID认证、参数设置),到音频采集处理(回调机制、状态管理)和资源释放。关键技术包括声学模型匹配、低功耗监听和唤醒阈值调节,适用于智能家居等语音交互场景。文章还提供了常见问题解决方案和性能优化建议,为开发者提供了语音唤醒技术的实用参考实现。
2025-05-30 10:52:41
1203
原创 Vue3集成Element Plus完整指南:从安装到主题定制下-实现后台管理系统框架搭建
本文介绍了基于Vue3构建综合管理系统的完整方案。系统采用VueRouter4配置嵌套路由,包含主页、关于页和404处理;主页面采用头部+侧边栏+内容区的经典布局,使用ElementPlus组件实现导航菜单、用户信息展示等功能;数据展示页面集成了查询表单、操作按钮、数据表格和分页组件。文章详细说明了路由配置、页面布局、组件集成和样式定制等关键技术点,并建议扩展路由守卫、Axios数据请求、Pinia状态管理等功能。该模板为企业级管理系统提供了可扩展的基础框架。
2025-05-24 23:21:25
1673
原创 WxAutoX+大模型实现微信群信息智能化提取
本文探讨了在数字化办公和社群运营中,如何利用WxAutoX工具与大模型技术实现微信群信息的智能化提取。微信群作为信息交流的重要平台,包含大量如房源、车辆、二手商品等数据,这些信息的有效提取对企业至关重要。文章详细介绍了通过Python脚本和Java后台代码,结合大模型技术,实现群消息与图片的关联分析,并提取关键信息如手机号、车辆信息等。最终,通过大模型整理后的数据,能够高效地提交到企业系统中,提升信息处理的智能化水平。
2025-05-21 21:14:39
374
1
原创 二手车行业级车辆信息查询API
"accidentLevel": 2, // 事故分级1-5。response_time = 80ms ± 5ms # 99线。:传统数据更新周期长达7-15天,导致平台车源信息滞后。# 基准测试结果(AWS c5.xlarge实例)A:采用中国汽车流通协会《二手车鉴定评估技术规范》A:通过BMS系统直连+充放电循环测试双重验证。4. 新能源电池循环次数(权重0.15)"make": "特斯拉",数据缓存不得超过24小时(GDPR要求)1. 行驶里程(权重0.32)2. 车龄(权重0.25)
2025-05-13 17:22:46
586
原创 实现微信聊天机器人+微信消息实时获取+大模型提炼
一、可以实现微信机器人获取消息后+大模型自动答复+向量化知识自动答复。比如:我们要抓取聊天内容中二手车信息(群OR个人都可以)二、实现群消息自动抓取+大模型批量提炼答复。2、可以看到我们获取信息后,自动请求服务。这个服务的目的就是调用大模型分析文本。
2025-05-08 10:06:24
542
1
原创 JS自动化获取网站信息开发说明
训练AI模型需要大量数据,自动化抓取能提供结构化数据集(如图像、文本、视频)。:自动化爬虫可以持续跟踪价格、新闻、股票等信息,帮助企业和个人快速做出决策。某些数据(如天气、交通、加密货币价格)需要实时更新,人工无法高效完成。:企业可以自动化抓取竞争对手的产品、价格、评论等信息,优化自身策略。:研究人员可以自动化抓取公开数据集、论文、专利等信息,加速研究进程。:政府和企业可以通过自动化抓取社交媒体、新闻网站等,了解公众舆论。:电商、金融等行业依赖数据抓取来分析竞争对手、行业趋势等。
2025-04-26 23:07:42
689
1
原创 基于Python或Java实现的本地知识库文档问答系统
本文详细介绍了如何使用Python和BGE-M3模型构建本地化的文档知识库问答系统。通过这一方案,我们实现了:文档的高效向量化表示基于语义的精准检索完全本地的数据处理流程可扩展的系统架构未来可能的改进方向包括:结合大语言模型(LLM)对检索结果进行总结和精炼实现多文档来源的实时更新机制开发更复杂的混合检索策略优化长文档的处理方式BGE-M3作为强大的本地向量化模型,为构建高效、隐私安全的问答系统提供了坚实基础。希望本文能为开发者构建自己的知识库应用提供有价值的参考。
2025-04-25 10:29:33
823
原创 Java开发经验总结
只要删繁、捋清脉络,才能掌握本质!只有创新才有价值,保持创新、保持学习!计划:UNIAPP+SPRINGBOOT学习、SPRINGBOOT+VUE新版学习、页面展示学习、PYTHON。*******************************************************************************************************************************************第一章:Java 程序设计概述******
2025-04-24 15:16:24
973
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人