论文标题
Data Distribution Distilled Generative Model for Generalized Zero-Shot Recognition 数据分布蒸馏生成模型用于广义零样本识别
论文链接
Data Distribution Distilled Generative Model for Generalized Zero-Shot Recognition论文下载
论文作者
Yijie Wang, Mingjian Hong, Luwen Huangfu, Sheng Huang
内容简介
本文提出了一种名为D3GZSL的端到端生成式广义零样本学习(GZSL)框架,旨在解决传统GZSL模型偏向已知数据的问题。D3GZSL将已知数据视为分布内数据,而合成的未知数据视为分布外数据,以实现更平衡的模型。该框架包含两个核心模块:分布内双空间蒸馏(ID2SD)和分布外批次蒸馏(O2DBD)。ID2SD通过对齐教师和学生网络的输出,增强学习一致性;O2DBD则引入低维的分布外表示,捕捉已知和未知类别之间的共享结构。实验结果表明,D3GZSL在多个GZSL基准测试中显著提升了现有生成式GZSL方法的性能,展示了其在改进零样本学习实践中的潜力。
分点关键点
-
D3GZSL框架
- D3GZSL是一个端到端的生成式GZSL框架,旨在平衡已知和未知类别的数据分布。通过将真实的已知数据视为分布内数据,合成的未知数据视为分布外数据,D3GZSL能够更有效地进行分类。
-
核心模块
- D3GZSL包含两个核心模块:ID2SD和O2DBD。ID2SD通过对齐教师和学生网络的输出,增强了模型的学习一致性;O2DBD则通过引入低维的分布外表示,捕捉已知和未知类别之间的潜在共享结构。
-
实验验证
- 通过在多个GZSL基准测试上的实验,D3GZSL展示了其在提升现有生成式GZSL方法性能方面的有效性。实验结果表明,D3GZSL能够显著提高模型的分类准确性,尤其是在处理未知类别时。
-
适应性与集成性
- D3GZSL具有良好的适应性,可以无缝集成到主流的生成框架中,如GAN、VAE和扩散模型。这种灵活性使得D3GZSL能够增强多种现有生成式GZSL方法的能力。
- D3GZSL具有良好的适应性,可以无缝集成到主流的生成框架中,如GAN、VAE和扩散模型。这种灵活性使得D3GZSL能够增强多种现有生成式GZSL方法的能力。
论文代码
代码链接:https://github.com/PJBQ/D3GZSL.git
中文关键词
- 广义零样本学习
- 数据分布蒸馏
- 生成模型
- 分布内数据
- 分布外数据
- 知识蒸馏
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!