AAAI2024最佳解读|Data Distribution Distilled Generative Model for Generalized Zero-Shot Recognition

论文标题

Data Distribution Distilled Generative Model for Generalized Zero-Shot Recognition 数据分布蒸馏生成模型用于广义零样本识别

论文链接

Data Distribution Distilled Generative Model for Generalized Zero-Shot Recognition论文下载

论文作者

Yijie Wang, Mingjian Hong, Luwen Huangfu, Sheng Huang

内容简介

本文提出了一种名为D3GZSL的端到端生成式广义零样本学习(GZSL)框架,旨在解决传统GZSL模型偏向已知数据的问题。D3GZSL将已知数据视为分布内数据,而合成的未知数据视为分布外数据,以实现更平衡的模型。该框架包含两个核心模块:分布内双空间蒸馏(ID2SD)和分布外批次蒸馏(O2DBD)。ID2SD通过对齐教师和学生网络的输出,增强学习一致性;O2DBD则引入低维的分布外表示,捕捉已知和未知类别之间的共享结构。实验结果表明,D3GZSL在多个GZSL基准测试中显著提升了现有生成式GZSL方法的性能,展示了其在改进零样本学习实践中的潜力。在这里插入图片描述

分点关键点在这里插入图片描述

  1. D3GZSL框架

    • D3GZSL是一个端到端的生成式GZSL框架,旨在平衡已知和未知类别的数据分布。通过将真实的已知数据视为分布内数据,合成的未知数据视为分布外数据,D3GZSL能够更有效地进行分类。
  2. 核心模块

    • D3GZSL包含两个核心模块:ID2SD和O2DBD。ID2SD通过对齐教师和学生网络的输出,增强了模型的学习一致性;O2DBD则通过引入低维的分布外表示,捕捉已知和未知类别之间的潜在共享结构。
  3. 实验验证

    • 通过在多个GZSL基准测试上的实验,D3GZSL展示了其在提升现有生成式GZSL方法性能方面的有效性。实验结果表明,D3GZSL能够显著提高模型的分类准确性,尤其是在处理未知类别时。
  4. 适应性与集成性

    • D3GZSL具有良好的适应性,可以无缝集成到主流的生成框架中,如GAN、VAE和扩散模型。这种灵活性使得D3GZSL能够增强多种现有生成式GZSL方法的能力。在这里插入图片描述

论文代码

代码链接:https://github.com/PJBQ/D3GZSL.git

中文关键词

  1. 广义零样本学习
  2. 数据分布蒸馏
  3. 生成模型
  4. 分布内数据
  5. 分布外数据
  6. 知识蒸馏

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

内容概要:本文档详细介绍了基于MATLAB实现的无人机三维路径规划项目,核心算法采用蒙特卡罗树搜索(MCTS)。项目旨在解决无人机在复杂三维环境中自主路径规划的问题,通过MCTS的随机模拟与渐进式搜索机制,实现高效、智能化的路径规划。项目不仅考虑静态环境建模,还集成了障碍物检测与避障机制,确保无人机飞行的安全性和效率。文档涵盖了从环境准备、数据处理、算法设计与实现、模型训练与预测、性能评估到GUI界面设计的完整流程,并提供了详细的代码示例。此外,项目采用模块化设计,支持多无人机协同路径规划、动态环境实时路径重规划等未来改进方向。 适合人群:具备一定编程基础,特别是熟悉MATLAB和无人机技术的研发人员;从事无人机路径规划、智能导航系统开发的工程师;对MCTS算法感兴趣的算法研究人员。 使用场景及目标:①理解MCTS算法在三维路径规划中的应用;②掌握基于MATLAB的无人机路径规划项目开发全流程;③学习如何通过MCTS算法优化无人机在复杂环境中的飞行路径,提高飞行安全性和效率;④为后续多无人机协同规划、动态环境实时调整等高级应用打下基础。 其他说明:项目不仅提供了详细的理论解释和技术实现,还特别关注了实际应用中的挑战和解决方案。例如,通过多阶段优化与迭代增强机制提升路径质量,结合环境建模与障碍物感知保障路径安全,利用GPU加速推理提升计算效率等。此外,项目还强调了代码模块化与调试便利性,便于后续功能扩展和性能优化。项目未来改进方向包括引入深度强化学习辅助路径规划、扩展至多无人机协同路径规划、增强动态环境实时路径重规划能力等,展示了广阔的应用前景和发展潜力。
### AAAI 2024 Conference Related Code Repositories For individuals interested in exploring the latest advancements presented at conferences like AAAI 2024, several platforms provide access to associated code repositories and examples. GitHub serves as a primary hub where researchers often publish their work alongside papers[^2]. By navigating through specific tags or using search terms such as "AAAI 2024," one can discover numerous projects that were either showcased during the event or inspired by it. Additionally, many academic institutions maintain dedicated pages for each edition of major AI conferences including AAAI. These sites typically include links to accepted paper submissions along with supplementary materials which may consist of datasets used in experiments, implementation details, and even full source codes when authors opt to share them publicly[^1]. Moreover, community-driven initiatives also play an important role in aggregating resources around significant events within the field of artificial intelligence. Websites focused on machine learning and data science frequently compile lists of noteworthy contributions from recent gatherings, offering readers easy navigation between abstracts and corresponding software implementations available online. #### Example Search Query for Finding Relevant Projects To streamline this process further, here is how someone might structure a query aimed at uncovering relevant repositories: ```bash site:github.com intitle:"AAAI 2024" ``` This command leverages Google's advanced operators to filter results specifically targeting titles containing both keywords while restricting searches exclusively within the domain name provided (in this case, GitHub). --related questions-- 1. How do I effectively contribute my own project to be featured prominently after attending prominent AI conferences? 2. What are some best practices for documenting research code intended for public release following publication in journals or presentation at symposiums? 3. Can you recommend any tools designed to facilitate collaboration among developers working on open-source AI applications derived from conference proceedings?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值