基础数论二:分解质因数、筛质数

1.分解质因数

     什么是质因数?质因数(素因数或质因子)在数论里是指能整除给定正整数的质数

    正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以用指数表示。根据算术基本定理,任何正整数皆有独一无二的质因子分解式 。只有一个质因子的正整数为质数。

     分解质因数只针对合数(分解质因数也称分解素因数),求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。分解质因数的算式叫短除法,和除法的性质相似,所以有如下代码:

void divide(int x)
{
   for(int i=2;i<=x;i++)
   {
      if(x%i==0)//i一定是质数
      {
         int s=0;
         while(x%i==0)
         {
           x/=i;
           s++;
         }
          cout<<i<<' '<<s<<endl;
   }
   if(x>1)cout<<x<<' '<<1<<endl;
}

     为什么这里i一定是质数呢,为什么这种方法可行呢?

     我们先判断x%i是否等于0,如果等于0,说明i是x的因子,我们要把i这个因子给去掉,就要进入循环,只要x%i==0成立,我们就执行x/=i的操作,把所有含i的因子给筛掉,这样在下次的时候,x中就不含2~i-1的所有因子,又因为i能整除x,则i也不含2~i-1的因子。

例题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

c++机械师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值