1.分解质因数
什么是质因数?质因数(素因数或质因子)在数论里是指能整除给定正整数的质数
正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以用指数表示。根据算术基本定理,任何正整数皆有独一无二的质因子分解式 。只有一个质因子的正整数为质数。
分解质因数只针对合数(分解质因数也称分解素因数),求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。分解质因数的算式叫短除法,和除法的性质相似,所以有如下代码:
void divide(int x)
{
for(int i=2;i<=x;i++)
{
if(x%i==0)//i一定是质数
{
int s=0;
while(x%i==0)
{
x/=i;
s++;
}
cout<<i<<' '<<s<<endl;
}
if(x>1)cout<<x<<' '<<1<<endl;
}
为什么这里i一定是质数呢,为什么这种方法可行呢?
我们先判断x%i是否等于0,如果等于0,说明i是x的因子,我们要把i这个因子给去掉,就要进入循环,只要x%i==0成立,我们就执行x/=i的操作,把所有含i的因子给筛掉,这样在下次的时候,x中就不含2~i-1的所有因子,又因为i能整除x,则i也不含2~i-1的因子。