椭圆曲线运算与在线不可转移签名技术解析
在密码学领域,椭圆曲线运算的效率提升以及数字签名的安全性保障一直是研究的重点。下面我们将详细探讨椭圆曲线的复合运算、预计算方案,以及在线不可转移签名的相关技术。
椭圆曲线复合运算与预计算方案
在椭圆曲线密码系统中,提高运算效率对于实际应用至关重要。研究人员提出了一种创新的方法来推导形如 (dP + Q) 的复合运算。通过将具有相同 (z) 坐标的特殊加法应用于素域上的通用标量乘法,这些新运算比基于先前公式构建的运算更快。这有可能加速所有已知二进制方法以及使用除 2 以外其他基数(如双基、三基或多基非相邻形式)的新标量乘法的计算。
1. 内存消耗与 I/M 平衡点分析
在比较基于 C 的方法和新方法时,之前的分析未考虑内存消耗。基于 C 的方法内存需求为 ((5L + R)),假设 (R = 8),以下表格总结了在给定可用寄存器数量下,两种方法性能等效的 I/M 平衡点。
# 寄存器 | 平衡点 |
---|---|
≤10 | 337(1,2) |
12 | 369(2) |
13 | 201(2) |
14 - 16 | 224(2) |