一、论文
- 研究领域:激光雷达惯性测距框架
- 论文:FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
-
IEEE Robotics and Automation Letters, 2021
-
香港大学火星实验室
- 论文链接
- 论文github
二、论文概要
2.1 主要思路
2.2 具体实现
2.3 实验设计
三、论文全文
FAST-LIO:一个快速、鲁棒的紧耦合迭代卡尔曼滤波器LiDAR惯性里程计包
- 摘要
本文提出了一种计算效率高且鲁棒的激光雷达惯性测距框架。我们融合LiDAR特征点与IMU数据使用紧耦合迭代扩展卡尔曼滤波器,以允许在发生退化的快速运动,嘈杂或混乱的环境中进行鲁棒导航。为了降低大量测量的存在下的计算负荷,我们提出了一个新的公式来计算卡尔曼增益。新公式的计算量取决于状态维而不是测量维。所提出的方法及其实现在各种室内和室外环境中进行测试。在所有测试中,我们的方法实时产生可靠的导航结果:它在四旋翼机载计算机上运行,在一次