聚类旅行商问题的近似算法
1. 引言
聚类旅行商问题(Clustered Traveling Salesman Problem, CTSP)是旅行商问题(Traveling Salesman Problem, TSP)的一种变体。在CTSP中,顶点集被划分为多个簇,目标是找到一个最短的哈密顿回路,使得每个簇内的顶点被连续访问。由于CTSP是TSP的泛化,因此它也是一个NP难问题。本文将探讨CTSP的不同变体,并为这些变体提供多项式时间的近似算法。
2. 问题定义
设 ( G=(V, E) ) 是一个完全无向图,其中 ( V ) 是顶点集,( E ) 是边集,边权重 ( l(e) ) 满足三角不等式。顶点集 ( V ) 被划分为 ( k ) 个簇 ( V_1, V_2, \ldots, V_k )。CTSP的目标是计算一个最短的哈密顿回路,该回路访问所有顶点,并且每个簇内的顶点被连续访问。
2.1 簇的定义
每个簇 ( V_i ) 包含一组顶点,簇内的顶点必须按照某种顺序连续访问。簇的划分可以根据实际应用的需求进行调整,例如地理区域、任务类型等。
2.2 问题变体
CTSP有不同的变体,取决于簇的起始和结束顶点是否已经指定。例如:
- 变体1 :簇的起始和结束顶点已知。
- 变体2 :簇的起始顶点已知,结束顶点未知。
- 变体3 :簇的起始和结束顶点均未知。
这些变体的复杂性和求解方法有所不同,但都可以通过近似算法进行求解。 </