异步语言的测试理论:探索与解析
1 异步语言的背景
异步π-演算是一种功能强大的形式化方法,用于描述分布式和移动进程。它基于异步交换名称,使得进程间的通信非阻塞,从而简化了并发系统的设计和分析。异步π-演算的描述能力已在多个研究中得到证实,它不仅在理论上有所贡献,还在实际应用中扮演了重要角色,如复杂分布式和高阶编程语言Pict的目标实现语言。
然而,一个演算的成功不仅仅依赖于其计算表达能力,还需要具备强大的等式理论,以支持对进程行为的推理。对于异步演算,开发适当的等式理论仍有许多工作要做。目前,仅有少数研究提出了强异步双模拟和可能测试的异步版本,这些研究为异步语言的行为理论奠定了初步基础。
2 测试理论的引入
本文研究了异步版本的CCS(称为TACCS),其中消息发射是非阻塞的。TACCS继承了CCS的大部分特性,但在消息发射方面引入了异步性。通过将标准的测试定义应用于TACCS的操作语义,我们获得了两种行为预序:可能测试预序(∼may)和必须测试预序(∼must)。
2.1 操作语义定义
TACCS的操作语义定义了三种转换关系:
- 接收信号 : p −→a q
,表示进程 p
可以在通道 a
上接收信号以成为 q
。
- 异步传输信号 : p −→a¯ q
,表示进程 p
可以在通道 a
上异步传输信号以成为