牛顿前插公式与后插公式简单例子 BIT数值分析5.5

题目

思路

公式:

牛顿前插公式

牛顿后插公式

尽量方法一般化,而不是针对某个题目

应该有更简单的方法,但是我没有查资料,直接就上手了

就这写了好久,脑壳疼,不说了

 

代码

# 牛顿前插后插公式
import numpy as np

xs = [0.0, 0.2, 0.4, 0.6, 0.8]
h = 0.2

ys = [[ '*' for i in range(len(xs)) ] for j in range(len(xs))]
ys[0] = [1.00000, 1.22140, 1.49182, 1.82212, 2.22554]

# 差分
def chf(y):

	l = len(y[0])
	try:
		for i in range( 1 , l ):
			for j in range( 0 , l-i ):
				# print("i,j:",i,',',j,)
				y[i][j] = y[i-1][j+1] - y[i-1][j]
	except Exception as err:
		print(err)


def jiech(n):
	ans = 1
	for i in range(1, n+1):
		ans *= i
	return ans

# 前插
def prech(x):
	t = (x-xs[0]) / h
	print("前插--t:",t)

	def pret_jiech(n):
		ans = 1
		if(n==0):
			# print("n:",n)
			return ans
		else:
			for i in range(n):
				# print("n:",n,'t-i:',t-i,)
				ans *= (t-i)
			# print('\n')
			return ans / jiech(n)

	result = 0
	for k in range(len(xs)):
		result += ys[k][0] * pret_jiech(k)
		print("加项------",ys[k][0] ,' * ', pret_jiech(k))
	print("前插--结果:",result)
	return result

# 后插
def backch(x):
	t = (x-xs[-1]) / h
	print("后插--t:",t)

	def backt_jiech(n):
		ans = 1
		if(n==0):
			# print("n:",n)
			return ans
		else:
			for i in range(n):
				# print("n:",n,'t-i:',t-i,)
				ans *= (t+i)
			# print('\n')
			return ans / jiech(n)

	result = 0
	l = len(xs)
	for k in range(l):
		result += ys[k][l-k-1] * backt_jiech(k)		# 下标可以是:[k][-k-1]或者[k][len(xs)-k-1]
		print("加项------",ys[k][l-k-1] ,' * ', backt_jiech(k))
	print("后插--结果:",result)
	return result


def main():
	# 建立差分表
	chf(ys)
	for i in range(len(ys[0])):
		print(ys[i])

	print("\n转置:")
	print(np.transpose(ys))

	# 前插
	prech(0.05)

	# 后插
	backch(0.75)

main()

 

效果

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值