NLP实践项目二:基于RNN、CNN的文本多分类(pytorch实现)

该博客介绍了基于RNN和CNN的文本多分类项目,使用PyTorch实现。内容涵盖数据预处理、模型定义(包括Vanilla RNN和LSTM以及CNN模型结构)以及模型训练。数据集来源于Rotten Tomatoes,预处理涉及分词、数值化和填充。模型训练部分提供GitHub链接以供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接看代码github传送门
数据集Classify the sentiment of sentences from the Rotten Tomatoes dataset

1. 数据预处理

本项目实现了两种数据预处理方式,一种是使用pytorch提供的dataset和dataloader实现数据预处理,一种是直接使用torchtext(强烈推荐上手试试)。两种方法的实现过程大体都是一致的,分词、数值化(word --> id)、填充、封装。最后一步是为了在训练过程中直接从迭代器中取出可输入到网络中的数据格式。

2. 模型定义
RNN模型(Vanilla RNN和LSTM)

使用序列模型做文本分类的过程都一样,先通过embedding层得到单词的词向量,然后将其输入到RNN中,通常是将最后一个单词对应的输出作为句子的特征向量,通过全连接层+softmax得到预测为各个标签的概率,最后使用交叉熵函数计算loss,然后更新参数。这里提一个我困惑的点,一般在介绍RNN时使用下面的图:
在这里插入图片描述
如果pytorch中是按上图的方式实现了RNN,那么不禁会问,为什么参数里没让我指定每一个timestep的输出

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值