Convolutional Neural Networks

Padding

Output Dimension

n+2pf+1n+2p−f+1

Padding Types

Valid: p=0p=0
Same: n+2pf+1=np=f12n+2p−f+1=n⇒p=f−12

Stride

Output Dimension

n+2pfs+1⌊n+2p−fs⌋+1

Convolutions Over Volume

n×n×ncprev,f×f×ncprev(n+2pfs+1)×(n+2pfs+1)×ncn×n×ncprev,f×f×ncprev⇒(⌊n+2p−fs⌋+1)×(⌊n+2p−fs⌋+1)×nc

Pooling

Output Dimension

nfs+1⌊n−fs⌋+1

One Layer of a Convolution Network

Size SymbolMeaning
f[l]f[l]Filter Size
p[l]p[l]Padding
s[l]s[l]Stride
n[l1]h×n[l1]w×n[l1]cnh[l−1]×nw[l−1]×nc[l−1]Input
n[l]h×n[l]w×n[l]cnh[l]×nw[l]×nc[l]Output
n[l]cnc[l]Number of filters
f[l]×f[l]×n[l1]cf[l]×f[l]×nc[l−1]Each filter size
a[l]n[l]h×n[l]w×n[l]ca[l]→nh[l]×nw[l]×nc[l]
A[l]m×n[l]h×n[l]w×n[l]cA[l]→m×nh[l]×nw[l]×nc[l]
Activations
f[l]×f[l]×n[l1]c×n[l]cf[l]×f[l]×nc[l−1]×nc[l]Weights
n[l]cnc[l]Bias

n[l]h=n[l1]h+2p[l]f[l]s[l]+1nh[l]=⌊nh[l−1]+2p[l]−f[l]s[l]⌋+1
n[l]w=n[l1]w+2p[l]f[l]s[l]+1nw[l]=⌊nw[l−1]+2p[l]−f[l]s[l]⌋+1

Types of Layers in a Convolutional Network

TypeAbbr.
ConvolutionCONV
PoolingPOOL
Fully ConnectedFC

Why Convolutions?

  1. Parameter Sharing: A feature detector that’s useful in one part of the image is probably useful in aother part of the image.
  2. Sparsity of Connections: In each layer, each output value depends only on a small number of inputs.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值