多智能体系统的分布式自适应一致性控制
1. 引言
近年来,多智能体系统在控制理论和控制工程领域备受关注,因其在移动机器人网络、智能交通管理和多航天器等方面具有广阔的应用前景。一致性控制是多智能体系统中最典型且热门的研究问题之一,旨在通过为每个智能体设计局部控制器,使所有智能体的状态或输出达成一致。
目前,已经针对精确已知的线性以及一阶或二阶非线性多智能体系统提出了大量分布式一致性控制方法。然而,对于具有模型不确定性和有向图的更一般的高阶非线性多智能体系统,相关研究成果仍然有限。此外,如何提高多智能体系统的一致性收敛速度以及节省通信资源的研究还不够深入。
2. 自适应控制
2.1 自适应控制概述
自适应控制是一种基于性能误差相关信息动态自调整控制参数的设计技术,目的是优化系统在其环境中的行为。这种方法能够实现多种目标,包括系统稳定性、以保证的稳态精度跟踪期望输出以及改善瞬态性能。
自20世纪50年代初诞生以来,自适应控制已成为一个具有重要理论和实践意义的研究领域。高性能飞机自动驾驶系统的发展是推动自适应控制广泛研究的关键动力。近七十年来,人们提出了众多自适应控制设计技术,以应对不同类型的系统和挑战。
2.2 常见自适应控制方法
常见的传统自适应控制方法包括:
- 模型参考自适应控制(MRAC)
- 基于系统和参数辨识的方案
- 自适应极点配置控制
20世纪80年代,为增强自适应控制器对未建模动态、干扰和建模误差的鲁棒性,引入了一些改进技术,如归一化、死区、切换σ - 修改和参数投影。20世纪90年代初,自适应反步控制出现,