15、文本分类:高信息词计算与多分类器组合

文本分类:高信息词计算与多分类器组合

1. 高信息词计算

1.1 高信息词与低信息词

高信息词是强烈偏向单一分类标签的词,在使用朴素贝叶斯分类器(NaiveBayesClassifier)和最大熵分类器(MaxentClassifier)的 show_most_informative_features() 方法时能看到这类词。不同分类器得出的高信息词有所不同,这是由于它们计算特征重要性的方式不同,而这种差异有助于提高分类准确性。

低信息词是所有标签中都常见的词,从训练数据中去除这些词反而能提高分类的准确性、精确率和召回率,因为仅使用高信息词可减少分类器内部模型的噪声和混淆。

1.2 计算高信息词的步骤

1.2.1 定义计算函数

featx.py 中使用 high_information_words() 函数计算电影评论语料库(movie_review corpus)中的高信息词。

from nltk.metrics import BigramAssocMeasures
from nltk.probability import FreqDist, ConditionalFreqDist
import collections

def high_information_words(labelled_words, score_fn=BigramAssocMeasures.chi_sq, min_score=5):
    word_fd = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值