基于软计算方法的学生学习能力预测与分类
1. 模糊系统在学生评估中的应用
模糊系统在评估学生表现和学习进度方面具有显著优势。它能够通过模糊规则对信息系统课程的学习成果进行建模和评估,还可应用于海报竞赛等评估场景,结合标准数值评分进行分级。与传统评分方法相比,模糊评分方法在预测个性化学生表现方面具有诸多优势,能使评估过程更具灵活性和鲁棒性。例如,模糊推理系统可根据学生的出勤、有效教学和其他设施等不同输入值来评估学生的表现。
2. 研究实验
2.1 数据集
本次研究采用了能力倾向测试数据集。该测试针对大四学生,旨在检验他们的逻辑推理和数值分析知识,这是进入跨国公司的基础。测试前会开展相关课程学习,学生需掌握数学公式、技巧、思维能力和逻辑等知识。试卷满分 50 分,共 50 道题,每题 1 分,题目设计遵循布鲁姆分类法,涵盖各个层次的问题且数量大致相等,考试时间为 1 小时。考试前 10 分钟会向学生提供在线测试链接,考试结束后收集学生的学号、姓名、时间戳和答题情况等数据。为便于计算,将每个层次的得分转换为满分 100 分。本次测试共有 151 名学生参加,计算出每个学生的总得分,并统计了各层次问题的学生平均得分百分比,具体如下表所示:
| 层次 | 百分比 |
| — | — |
| RM avg | 72.09302 |
| UN avg | 58.43023 |
| AP avg | 56.10465 |
| AN avg | 61.49871 |
| EV avg | 54.65116 |
| CR avg | 54.52196 |
同时,还对比了传统