简单实现K-means聚类

一、 实验目的:
加深对非监督学习的理解,掌握K-means聚类算法的设计方法。
二、 实验要求及实验环境
生成3个高斯分布数据(样本数据量至少1000),协方差矩阵为单位阵,并将其写入文件中;
利用K-Means聚类方法对生成的数据进行聚类。
三、 实验报告
1.程序源代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 设置字体样式
plt.rcParams['axes.unicode_minus']=False # 设置字符不显示

import warnings
warnings.filterwarnings('ignore') # 不显示警告信息

from sklearn.cluster import KMeans
from sklearn.datasets import make_gaussian_quantiles
from sklearn.manifold import TSNE
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import calinski_harabasz_score, silhouette_score,davies_bouldin_score

# 生成协方差为单位矩阵,样本数据量为1000,每个样本特征为2
x1, y1 = make_gaussian_quantiles(cov=1,n_samples=1000,n_features=2) 
# 写入文件
res = pd.DataFrame(x1)
res.to_csv('1.csv')

# 原始数据分布散点图
plt.figure(figsize=(25, 25))
plt.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值