【动态规划】数组中数字和为sum的方案个数

【动态规划】数组中数字和为sum的方案个数

给定一个有 nnn个正整数的数组 a 和一个正整数 sumsumsum,求选择数组 a
部分数字和为sumsumsum的方案数。若两种选取方案有一个数字的下标不一样,则认为是不同的方案。

输入描述:输入为两行,第一行为两个正整数 aaasumsumsum,第二行为 nnn 个正整数a[i],以空格隔开。
输出描述:输出所求的方案数。
设计算法实现上述需求,并分析算法的时间复杂度。

代码实现

#include<bits/stdc++.h>
using namespace std;

#define MAX 100

int a[MAX] = {
   
   5,5,10,2,3};
int n = 5,sum=15;

void printNum(int num[MAX][MAX],int n,int sum);

int getPro(int a[],int sum,int n)
{
   
   
    int res=0;
    int dp[MAX][MAX]={
   
   0};
    if(sum==0)return 0;

    for(int i=0;i<=n;i++)
    {
   
   
        dp[i][0]=1;
    }
    printNum(dp,n,sum);
    for(int i=1;i<=sum;i++)
    {
   
   
        dp[0][i]=0;
    }
    
    for(int i=1;i<=n;i++)
    {
   
   
        for(int j=1;j<=sum;j++)
        {
   
   
            if(a[i-1]>j)
            {
   
   
                dp[i][j] = dp[i-1][j];//这时候背包已经装不下新的物品了,所以可装的物品应该不变,即继承了上一行的值即可    ->    dp[i][j] = dp[i-1][j]
            }
            else
            {
   
   
                dp[i][j] = dp[i-1][j]+dp[i-1][j-a[i-1]];
            }
        }
        printNum(dp,n,sum);
    }
    printNum(dp,n,sum);
    return dp[n][sum];
}

void printNum(int num[MAX][MAX],int n,int sum){
   
   
    cout << "\t  ";
    for(int i=0;i<=sum;i++)
    {
   
   
        printf("%2d ",i);
    }
    cout << endl;

    printf("\t  ");
        for(int j=0;j<=sum;j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值