【AI之路】cmd命令行通过Huggingface镜像站快速下载模型文件的方法


前言

Hugging Face Hub 是分享机器学习模型、演示、数据集和指标的首选之地。 huggingface_hub 库可以轻松下载Huggingface上有用的模型和数据集元数据。
但大模型文件通常较大,国内下载太慢,那有没有高效便捷的方法?

这个当然必须有!


一、huggingface-cli 是什么?

huggingface-cli 是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。

首先安装依赖

pip install -U huggingface_hub

二、使用步骤

1. 设置环境变量加个速

hf-mirror.com是 huggingface.co镜像,国内下不下来的模型,通过这个就可以轻松下载。先使用如下命令给Windows临时设置一下环境变量,cmd窗口直接运行如下命令:

set HF_ENDPOINT=https://hf-mirror.com

运行以上命令后,即从镜像网站下载,速度可以提升好几个档位。

2. 下载示例

这里以下载Index-TTS 的模型文件为例
在这里插入图片描述
同时下载多个文件,具体命令如下:

huggingface-cli download IndexTeam/Index-TTS bigvgan_discriminator.pth bigvgan_generator.pth bpe.model dvae.pth gpt.pth unigram_12000.vocab --local-dir checkpoints

参数示意:
--local-dir checkpoints 指定下载文件保存的本地目录,这里指定为名为 checkpoints 的文件夹。
--resume-download 选项允许如果下载中断了能够继续下载。不过使用了镜像库,很快就下完了,这个参数就不用加了。

3. 完整运行结果

(base) C:\Users\Administrator>set HF_ENDPOINT=https://hf-mirror.com

(base) C:\Users\Administrator>huggingface-cli download IndexTeam/Index-TTS bigvgan_discriminator.pth bigvgan_generator.pth bpe.model dvae.pth gpt.pth unigram_12000.vocab --local-dir checkpoints
Fetching 6 files:   0%|                                                                          | 0/6 
<think>我们正在处理用户的问题:如何获取从HuggingFace下载模型的命令。 根据提供的引用,我们可以总结出几种方法方法一:使用huggingface-cli命令行工具(引用[1][2][4][5]) 1. 安装huggingface_hub包:`pip install huggingface_hub` 2. 使用命令:`huggingface-cli download [模型名称] --cache-dir [保存路径]` 例如:`huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --cache-dir ./my_model` 方法二:使用git(引用[3]) 由于HuggingFace模型库也是git仓库,可以使用git命令克隆(但注意大文件可能要用git-lfs): `git lfs install` `git clone https://huggingface.co/[模型名称]` 方法三:使用第三方工具(引用[3]提到用aria2/wget+git,但具体命令未给出) 用户明确要求获取命令,所以我们重点提供命令行方法。 另外,引用[5]提供了一个生成下载命令的脚本,但用户可能只需要基本命令。 我们还需要注意: - 用户可能需要先登录(引用[2]):使用`huggingface-cli login`登录,然后`huggingface-cli whoami`检查登录状态。 - 下载时可以选择只下载特定文件(引用[5]展示了如何列出所有文件并逐个下载,但通常我们直接下载整个仓库)。 因此,回答如下:</think>### HuggingFace模型下载命令详解 根据引用资料,从HuggingFace下载模型主要有以下两种常用方法: #### 方法一:使用官方CLI工具(推荐) 1. **安装工具**: ```bash pip install huggingface_hub ``` 2. **登录账号**(访问私有模型时需要): ```bash huggingface-cli login # 输入账号token后按回车 ``` 3. **基础下载命令**: ```bash huggingface-cli download <模型名称> --local-dir <保存路径> ``` **示例**(下载Zephyr-7B模型到当前目录): ```bash huggingface-cli download HuggingFaceH4/zephyr-7b-beta --local-dir ./zephyr-model ``` 4. **高级参数**: ```bash # 指定缓存目录 huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --cache-dir /data/models # 仅下载特定文件 huggingface-cli download HuggingFaceH4/zephyr-7b-beta config.json pytorch_model.bin ``` #### 方法二:Git下载(适用于完整仓库) ```bash git lfs install # 需先安装Git LFS git clone https://huggingface.co/<模型名称> ``` **示例**: ```bash git clone https://huggingface.co/google/flan-t5-large ``` #### 注意事项: 1. 模型名称格式为`组织名/模型名`,可在模型主页左上角查看[^4] 2. 下载前使用`huggingface-cli whoami`验证登录状态[^2] 3. 大模型需确保磁盘空间充足(如LLaMA-3-70B约需130GB+) 4. 国内用户可通过镜像站加速(如`https://hf-mirror.com`替换`https://huggingface.co`) > 示例命令完整执行流程: > `pip install huggingface_hub` → `huggingface-cli login` → `huggingface-cli download deepseek-ai/deepseek-r1.5-1.3b --local-dir ./model`[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT里的交易员

分享是一种快乐,打赏是一种肯定

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值