【datawhale 】打卡 task 01--深度学习

本文提供了一系列深度学习的学习资源,包括伯禹学习平台上的课程链接、文本预处理与语言模型教程、循环神经网络基础介绍,以及《动手学深度学习》中文版教材和PyTorch中文文档等实用资料。此外,还分享了GitHub上的开源代码仓库,帮助读者深入理解并实践深度学习技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习平台: 伯禹
https://www.boyuai.com/elites/

学习资料:https://shimo.im/mindmaps/jkhHr3pCkCYwWWgR
在这里插入图片描述

线性回归;Softmax与分类模型、多层感知机
文本预处理;语言模型;循环神经网络基础
《动手学深度学习》中文版官网教材:http://zh.gluon.ai/
PyTorch中文文档:https://pytorch-cn.readthedocs.io/zh/stable/
部分PyTorch代码来自GitHub开源仓库:https://github.com/ShusenTang/Dive-into-DL-PyTorch

两门辅修课观看地址:
《人工智能数学基础》https://www.boyuai.com/elites/course/D91JM0bv72Zop1D3
《ACM班机器学习》https://www.boyuai.com/elites/course/x3fyYxaRhVWJxGSI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值