目录
前言
卷积神经网络具有平移不变性,而图网络不具有该性质,因此不能直接做卷积操作。
传统的卷积神经网络通过卷积核实现参数共享,且参数的数量由卷积核的大小决定,而图网络无法直接进行卷积,则不能实现参数共享,其参数个数与图像的像素矩阵保持一致。
其次卷积神经网络还具有局部连接性,从而使得每次计算只需要在一个卷积核大小的区域进行,而图网络由于其不规则性,需要对整张图做计算,类似于全连接神经网络,参数数量将会非常大。
通过参数共享和局部连接性我们可以将参数从O(W*H*K*N) 降低到O(m*m*k) 。其中,W、H 和 K 分别为图像的宽、高和通道,N 为隐藏层节点个数,m 为卷积核宽,k 为卷积核个数。
此外,卷积神经网络还具有层次化表达的特点,即其可以通过叠加卷积层得到更深层次的特征。
GNN网络是为了解决实际应用中的非欧式数据而提出来的一种网络。
共分为两种:基于空间的GNN网络和基于谱图的GNN网络。
提示:以下是本篇文章正文内容,下面案例可供参考
一、介绍
以中学学的几何定理为依据,欧式空间(包括二维、三维以上的空间)是指能运用这些定义的理想化空间,多维的欧式空间是在二三维欧式空间的在同规则下的抽象和推广。非欧式空间及不满足这些规律的空间,具有非结构化的特点,例如,在一个曲面上测量一个物体的周长,在凹凸不平的地面上测量两点之间的距离等。欧式图像对应的欧式数据,包括图片、音频、视频。现实生活中的欧式空间有知识图谱、社交网络等。
图神经网络就是为了处理这些欧式空间的数据而提出的。图卷积神经网络需要解决如何对图卷积和对图pooling两大问题。
二、基于谱图的GNN
1.简介
根据卷积定理,将空域上图的卷积,转化为频率上的卷积。
2.基础知识
傅里叶变换
任何一个周期函数都能等价为一系列的正(余)弦函数的和,这就是傅里叶级数。将一个周期函数经过傅里叶变换,也就是将一个时域上的函数表达,转换为其频域和相位的表示。
通过傅里叶变换,可以将低频的声音转换为高频的声音,或者实现在嘈杂环境中的声音频率过滤;又或对图片的傅里叶变换,可以根据变化后数据的频率特征,提取图片中的特征,如低频率的轮廓特征,高频率的细节特征。最后结果的输出只要将这些数据再做一次傅里叶反变换即可。
拉普拉斯变换
拉普拉斯变化是傅里叶变换的一种改进,与傅里叶相比,它能处理信号函数趋向于无穷大及振幅越来越大的情况,它有两种理解方式:一是这种变换引进了衰减因子,使原信号函数趋于平缓稳定;二是其通过增大傅里叶变换的正弦波,从而改变最后输出函数的振幅。
卷积定理
函数卷积的傅里叶变换是函数傅里叶变换的卷积。因此,图在空域上做卷积,可以转换为先对图和卷积核做傅里叶变换,将结果相乘后在做傅里叶逆变换。
图的卷积公式
一般的傅里叶变换公式为:
图的傅里叶变换为:,表示图信号在对应