基于梯度和纹理特征的图像融合技术解析
1. 梯度金字塔向拉普拉斯金字塔的转换
在图像重建过程中,梯度金字塔需要转换为拉普拉斯金字塔。具体来说,每个 $D_{lk}$ 会被转换为对应的二阶偏导数金字塔(方向金字塔),公式如下:
$ L_{lk} = - \frac{1}{8} d_k \otimes D_{lk}$ (3.10)
所有方向的金字塔共同构成拉普拉斯金字塔 $L_l$:
$L_l = \sum_{k = 1}^{4} L_{lk}$ (3.11)
2. 基于梯度特征的多尺度变换融合策略
该融合过程包含六个具体步骤:
1. 图像输入与配准 :将原始图像 $x_1(n)$ 和 $x_2(n)$ 进行空间配准。
2. 算法建立 :根据给定的梯度滤波器 $d_i$($i = 1, \cdots, 4$),建立基于梯度特征的多分辨率分解算法。
3. 金字塔分解 :对原始图像进行基于联合纹理和梯度特征的多分辨率金字塔分解。
4. 融合策略 :图像分解为基于纹理和边缘的多分辨率形式后,采用基于相似性度量和显著性度量的融合策略。
- 以每个像素为起点,开辟一个 $3 \times 3$ 的小窗口,窗口模板系数为:
$\alpha = \begin{bmatrix} 1 & 1 & 1 \ 1 & 8 & 1 \ 1 & 1 & 1 \end{bmatrix} \frac{1}