简介
在现代AI应用中,检索器(Retriever)模块在信息检索和问答系统中扮演了重要的角色。本文将介绍如何使用 LlamaIndex 中的 RetrieverEvaluator 模块来评估检索器的质量。我们将通过多个评估指标,如命中率(hit-rate)和平均折返率(MRR),来量化检索结果的质量。
环境准备
首先,我们需要安装所需的库并加载数据。
%pip install llama-index-llms-openai
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import generate_question_context_pairs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
# 下载数据
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
# 加载数据
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
node_parser = SentenceSplitter(chunk_size=512)
nodes = node_parser.get_n