使用LLamaIndex微调跨编码器的指南
本文将介绍如何使用LLamaIndex和Gradient平台对跨编码器进行微调。我们将以QASPER数据集为例,详细解释从数据加载、数据生成、微调、评估等一系列步骤。
前提条件
如果您在colab上打开此Notebook,首先需要安装LlamaIndex和相关依赖。
# 安装所需依赖
%pip install llama-index-finetuning-cross-encoders
%pip install llama-index-llms-openai
!pip install llama-index
!pip install datasets --quiet
!pip install sentence-transformers --quiet
!pip install openai --quiet
加载数据集
我们将从HuggingFace Hub下载QASPER数据集。
from datasets import load_dataset
import random
# 从HuggingFace 下载QASPER数据集
dataset = load_dataset("allenai/qasper")
# 分割数据集为训练集、验证集和测试集
train_dataset = dataset["train"]
validation_dataset = dataset["validation"]
test_dataset = dataset["test"]
random.seed(42) # 设置随机种子以确保可复现性
# 随机抽样800行训练数据
train_sampled_indices = random.sample(range(len(train_dataset)), 800)
train_samples = [train_dataset[i] for i in train_sampled_indices]
# 随机抽样100行测试数据
test_sampled_indices = random.sample(range(len(test_dataset)), 80)