使用LLamaIndex微调跨编码器的指南

使用LLamaIndex微调跨编码器的指南

本文将介绍如何使用LLamaIndex和Gradient平台对跨编码器进行微调。我们将以QASPER数据集为例,详细解释从数据加载、数据生成、微调、评估等一系列步骤。

前提条件

如果您在colab上打开此Notebook,首先需要安装LlamaIndex和相关依赖。

# 安装所需依赖
%pip install llama-index-finetuning-cross-encoders
%pip install llama-index-llms-openai
!pip install llama-index
!pip install datasets --quiet
!pip install sentence-transformers --quiet
!pip install openai --quiet

加载数据集

我们将从HuggingFace Hub下载QASPER数据集。

from datasets import load_dataset
import random

# 从HuggingFace 下载QASPER数据集
dataset = load_dataset("allenai/qasper")

# 分割数据集为训练集、验证集和测试集
train_dataset = dataset["train"]
validation_dataset = dataset["validation"]
test_dataset = dataset["test"]

random.seed(42)  # 设置随机种子以确保可复现性

# 随机抽样800行训练数据
train_sampled_indices = random.sample(range(len(train_dataset)), 800)
train_samples = [train_dataset[i] for i in train_sampled_indices]

# 随机抽样100行测试数据
test_sampled_indices = random.sample(range(len(test_dataset)), 80)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值