从零开始搭建多模态幻灯片视觉助手

在当今的数据驱动时代,能够快速从视觉信息中提取要点是非常有价值的。多模态大语言模型(LLM)能够分析图像并回答相关问题,为幻灯片演示提供了一种新的交互方式。本文将介绍如何使用rag-gemini-multi-modal模板来创建一个可以处理幻灯片的视觉助手。

技术背景介绍

视觉助手通过将幻灯片中的图形和图片嵌入到可搜索的索引中,能够根据用户的提问检索相关幻灯片,并生成答案。我们将使用OpenCLIP嵌入来处理幻灯片中的图像,并使用Google Gemini进行答案合成。

核心原理解析

  1. OpenCLIP嵌入:我们使用OpenCLIP对幻灯片中的图像进行嵌入,通过嵌入生成的向量来表示图像的特征。
  2. Chroma存储:这些嵌入的向量存储在Chroma中,这样我们可以高效地进行相似性搜索。
  3. Google Gemini合成:对于检索到的相关幻灯片,我们使用Google Gemini生成详细答案。

代码实现演示

首先,创建索引以准备幻灯片:

poetry install
python ingest.py

在此过程中,我们将幻灯片中的所有图片嵌入并存储。

环境设置

确保设置GOOGLE_API_KEY以访问Google Gemini:

export GOOGLE_API_KEY=your-google-api-key

安装LangChain CLI工具:

pip install -U langchain-cli

创建一个新的LangChain项目,或将模板添加到现有项目中:

langchain app new my-app --package rag-gemini-multi-modal

或者:

langchain app add rag-gemini-multi-modal

server.py文件中添加如下代码以启动服务:

from rag_gemini_multi_modal import chain as rag_gemini_multi_modal_chain

add_routes(app, rag_gemini_multi_modal_chain, path="/rag-gemini-multi-modal")

最后,启动本地服务器:

langchain serve

此命令将启动FastAPI应用,您可以在本地访问服务:http://localhost:8000

应用场景分析

这种技术主要适用于需要从大量幻灯片中快速提取信息的场景,如企业季度财务报告分析、学术会议演示文档分析等。

实践建议

  1. 选择合适的嵌入模型:根据图片的复杂程度和设备性能,选择合适的OpenCLIP模型。
  2. 环境变量管理:确保环境变量正确配置,避免API调用失败。
  3. 监控和调试:可选地使用LangSmith监控应用的运行状态,提高应用的可靠性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值