在当今的数据驱动时代,能够快速从视觉信息中提取要点是非常有价值的。多模态大语言模型(LLM)能够分析图像并回答相关问题,为幻灯片演示提供了一种新的交互方式。本文将介绍如何使用rag-gemini-multi-modal
模板来创建一个可以处理幻灯片的视觉助手。
技术背景介绍
视觉助手通过将幻灯片中的图形和图片嵌入到可搜索的索引中,能够根据用户的提问检索相关幻灯片,并生成答案。我们将使用OpenCLIP嵌入来处理幻灯片中的图像,并使用Google Gemini进行答案合成。
核心原理解析
- OpenCLIP嵌入:我们使用OpenCLIP对幻灯片中的图像进行嵌入,通过嵌入生成的向量来表示图像的特征。
- Chroma存储:这些嵌入的向量存储在Chroma中,这样我们可以高效地进行相似性搜索。
- Google Gemini合成:对于检索到的相关幻灯片,我们使用Google Gemini生成详细答案。
代码实现演示
首先,创建索引以准备幻灯片:
poetry install
python ingest.py
在此过程中,我们将幻灯片中的所有图片嵌入并存储。
环境设置
确保设置GOOGLE_API_KEY
以访问Google Gemini:
export GOOGLE_API_KEY=your-google-api-key
安装LangChain CLI工具:
pip install -U langchain-cli
创建一个新的LangChain项目,或将模板添加到现有项目中:
langchain app new my-app --package rag-gemini-multi-modal
或者:
langchain app add rag-gemini-multi-modal
在server.py
文件中添加如下代码以启动服务:
from rag_gemini_multi_modal import chain as rag_gemini_multi_modal_chain
add_routes(app, rag_gemini_multi_modal_chain, path="/rag-gemini-multi-modal")
最后,启动本地服务器:
langchain serve
此命令将启动FastAPI应用,您可以在本地访问服务:http://localhost:8000
应用场景分析
这种技术主要适用于需要从大量幻灯片中快速提取信息的场景,如企业季度财务报告分析、学术会议演示文档分析等。
实践建议
- 选择合适的嵌入模型:根据图片的复杂程度和设备性能,选择合适的OpenCLIP模型。
- 环境变量管理:确保环境变量正确配置,避免API调用失败。
- 监控和调试:可选地使用LangSmith监控应用的运行状态,提高应用的可靠性。
如果遇到问题欢迎在评论区交流。
—END—