1、抛物型偏微分方程自适应控制的探索与实践

抛物型偏微分方程自适应控制的探索与实践

1. 控制领域的挑战与争议

控制偏微分方程(PDE)和自适应控制都是极具挑战性的领域。在PDE控制中,挑战源于系统动力学的无限维特性;而在自适应控制中,难点在于为参数高度不确定且可能开环不稳定的系统设计反馈,这要求同时进行控制和学习,即使被控对象是线性的,自适应控制器也往往是非线性的,导致自适应反馈系统的详细行为(如瞬态性能)难以预测。

在20世纪80年代,自适应控制领域充满了争议。习惯了线性反馈系统可预测性和线性性能限制结果(如Bode定理)的研究群体,首次面临本质上是非线性的反馈问题。这些争议不仅源于对特定自适应反馈方案的理解不足,还源于对问题本质——在大参数不确定性下实现稳定——的认识不够。到了90年代初,基于积分器反步法的新自适应方案出现,可系统地降低性能边界(在L∞和L2范数下),争议才有所平息。然而,在缺乏“持续激励”的情况下,自适应控制器的不可预测性(具体而言,而非整体性能边界意义上),即自适应反馈方案的瞬态和渐近行为对初始条件的依赖,是该问题的根本所在。可以说,这种困难正是自适应控制工程吸引力受到质疑、数学美感开始显现的地方。尽管经历了动荡的发展初期,自适应控制在如今依然充满活力,在航空航天系统和飞行控制等传统上被认为风险过高的领域,其工业应用也越来越多。

对于PDE控制,虽然没有出现同等规模的争议,但该领域一直难以吸引工程师。一方面是PDE相关的数学难度较大;另一方面,很多人认为有限维控制设计工具应该足够,因为许多(尽管不是全部)PDE由有限维动态行为主导,所以模型降阶、Galerkin逼近或空间离散化应该能解决问题。但实际并非如此简单,将PDE近似为ODE进行控制设计是一个复杂的“鸡与蛋”问题,无法确定基于开环考虑的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值