数学不等式、特殊函数及偏微分方程相关知识解析
1. 庞加莱(Poincaré)和阿冈(Agmon)不等式
1.1 庞加莱不等式
对于任意 (w \in H^1(0, 1)),有以下不等式成立:
(\int_{0}^{1} w^2(x) dx \leq 2w^2(1) + 4\int_{0}^{1} w_x^2(x) dx)
(\int_{0}^{1} w^2(x) dx \leq 2w^2(0) + 4\int_{0}^{1} w_x^2(x) dx)
其更严格的版本为:
(\int_{0}^{1} (w(x) - w(1))^2 dx \leq \frac{4}{\pi^2}\int_{0}^{1} w_x^2(x) dx)
(\int_{0}^{1} (w(x) - w(0))^2 dx \leq \frac{4}{\pi^2}\int_{0}^{1} w_x^2(x) dx)
这些严格版本有时被称为“维尔廷格不等式的变体”,其证明比前两个不等式的证明复杂得多。
下面是第一个不等式的证明过程:
(\int_{0}^{1} w^2 dx = xw^2| {0}^{1} - 2\int {0}^{1} xww_x dx = w^2(1) - 2\int_{0}^{1} xww_x dx)
(\leq w^2(1) + \frac{1}{2}\int_{0}^{1} w^2dx + 2\int_{0}^{1} x^2w_x^2 dx)
两边同时减去第二项,可得:
(\frac{1}{2}\int_{0}^{1} w^2(x) dx \le