【自动驾驶】小障碍物检测&分割数据集 【Lost and Found】

本文介绍了Lost&Found数据集,这是一个专注于检测道路上丢失货物等小障碍物的专有数据集。数据集由ZED被动双目相机采集,包含2104个标注帧,并在后续研究中被多个算法用作基准。文章讨论了相关方法,特别是使用RGBD条形输入网络以优化深度信息的策略,这一方法在后续工作中被广泛应用。此外,Lost&Found数据集对fishyscapes等异常检测benchmark的发展产生了影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

禁止转载
自动驾驶的机非人障碍物识别方面已经有很多工作了,相关数据集、方法也非常完善。但是,关注道路普通障碍物的方法仍然很少。笔者将从多个角度,分多系列文章来描述目前效果较好的方法。希望各位看官关注我已获得长期更新。

资源

官网:https://www.6d-vision.com/current-research/lostandfounddataset
补充链接:https://wwwlehre.dhbw-stuttgart.de/~sgehrig/lostAndFoundDataset/
百度网盘:
工具包:https://github.com/mcordts/cityscapesScripts
工具包替换labels.py即可

介绍

本数据集于2016(IROS)年在《Peter Pinggera、Sebastian Ramos、Stefan Gehrig、Uwe Franke、Carsten Rother、Rudolf Mester》论文中提出,关注于检测道路上由丢失货物引起的意外小障碍物的问题。数据使用ZED被动双目采集,共有2104标注好的数据。数据提出后的几年有多个数据集效仿(如seg me if you can 、SOD),同时有40+的算法将此数据集作为benchmark。后续L&F被fishyscapes标准借鉴去做训练集,他们还额外扩展了私榜和web更新榜单。fishyscapes是目前道路异常检测任务中主流的benchmark。
同时,其中提出的算法使用的假设平面和竖直矩形分割方法在此任务的分割算法中较为常见。此方法将RGBD划分成竖条输入网络(更好的利用深度信息),被后续算法广泛采用。

数据集细节

该数据集包含 112 个立体视频序列和 2104 个带注释的帧(从记录的数据中大约每十分之一帧挑选一次)。
数据集使用的障碍物道具如下图:
L&F数据集概览
数据集详细标注
数据集详细标注

数据集介绍:自动驾驶交通障碍物目标检测数据集 一、基础信息 数据集名称:自动驾驶交通障碍物目标检测数据集 数据规模: - 训练集:10,627张图片 - 验证集:1,298张图片 - 测试集:1,272张图片 分类类别: - Car(汽车):道路主要交通工具,包含多种车型 - Motorbike(摩托车):两轮机动车辆及骑行者 - Person(行人):道路行人及动态行为 - Pole(杆状物):路灯杆、交通标志杆等垂直障碍物 - Reflective_cone(反光锥):道路施工警示标识 - Truck(卡车):大型货运车辆及特殊运输车 标注格式: YOLO格式标注,包含边界框坐标与类别编码,适配YOLOv3/v5/v8等主流检测框架 二、适用场景 自动驾驶感知系统开发: 训练车载摄像头实时识别道路障碍物,支持ADAS系统进行碰撞预警和路径规划 交通监控系统优化: 提升电子警察系统对复杂交通元素的识别准确率,支持违章行为分析 机器人视觉导航: 为服务机器人/AGV提供室外环境感知能力,实现动态障碍物避让 学术研究应用: 支持多目标检测算法研究,包含小目标(反光锥)与大尺度目标(卡车)的检测优化 三、数据集优势 场景适配性强: 覆盖6类道路核心障碍物,包含静态设施(杆状物)与动态目标(行人、车辆)的多样化组合 标注专业化: 采用YOLO工业标准标注规范,坐标精度达小数点后6位,支持像素级检测需求 数据分布均衡: 万级训练样本量配合科学划分的验证/测试集,满足模型开发全流程需求 跨模型兼容性: 原生支持YOLO系列算法,可快速迁移至Faster R-CNN、RetinaNet等检测框架
### Fishyscapes 数据集介绍 Fishyscapes 是一个专门为评估道路场景理解中的不确定性而设计的数据集[^1]。该数据集旨在解决现有自动驾驶视觉任务中对于不确定性的忽视,通过提供具有挑战性的测试环境来促进研究者开发更稳健的模型。 #### 主要特点 - **真实世界复杂度**:包含多种天气条件下的城市驾驶场景图像。 - **标注质量高**:提供了精确像素级语义分割标签以及实例级别标注。 - **多样性样本**:涵盖了不同光照、时间和地点的变化情况。 - **异常检测支持**:特别适合用于训练和验证能够识别未见过障碍物或罕见事件(如突然出现行人)的方法。 #### 使用方法 为了利用 Fishyscapes 进行实验,通常遵循如下方式: ##### 准备工作 下载并解压官方发布的数据包后,可以得到多个子文件夹,分别对应不同的任务设置。例如,“Lost and Found”版本专注于静态物体消失后的重建;“Semi-supervised segmentation”则关注部分标记图片上的半监督学习问题。 ##### 训练过程建议 由于目标之一是在缺乏充分先验知识的情况下处理未知类别,因此推荐采用合成负样本来增强模型泛化能力的技术路线。具体来说,在预训练阶段引入大量人工生成但不含实际危险因素的画面作为背景素材,从而让网络学会区分正常交通流与其他潜在威胁之间的差异。 ```python import torch from torchvision import transforms, datasets transform = transforms.Compose([ transforms.Resize((256, 512)), transforms.ToTensor(), ]) dataset_train = datasets.ImageFolder(root='path_to_fishyscapes/train', transform=transform) dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=8, shuffle=True) for images, labels in dataloader_train: # Training code here... ``` ##### 测试与评价指标 当完成模型调整之后,可以通过计算预测结果同真值之间的一致性程度来进行性能评测。常用衡量标准包括但不限于交并比(IoU),平均精度均值(mAP)等统计量。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值