如何合理使用python的虚拟环境virtualenv

虚拟环境在Python开发中用于隔离项目依赖,避免版本冲突。本文介绍了如何在Windows和Linux上安装virtualenv及virtualenvwrapper,详细讲解了创建、激活和退出虚拟环境的步骤,并总结了虚拟环境的主要优点,包括方便项目隔离、明确项目库需求和简化部署。此外,还提到了使用pip冻结和安装项目依赖的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

了解虚拟环境

如果在一台机器上,想开发多个不同的项目,需要用到同一个包的不同版本,如果还使用上面的命令,在同一个目录下安装或者更新,其它的项目必须就无法运行了,怎么办呢?

解决方案:虚拟环境

那么什么是虚拟环境呢?

虚拟环境其实就是对真实 python 环境的复制,这样我们在复制的 python 环境中安装包就不会影响到真实的python环境。通过建立多个虚拟环境,在不同的虚拟环境中开发项目就实现了项目之间的隔离。

虚拟环境库的安装

我们这里使用 virtualenv 来创建虚拟环境。
pip 默认的源安装第三库会有点慢,可以配置一下其他的镜像源。

Windows上安装

cmd 窗口查看系统是否安装了virtualenv

virtualenv --version

pip 安装 virtualenv

pip3 install virtualenv
pip3 install virtualenvwrapper-win

virtualenvwrapper-win虚拟环境扩展包(指令便捷)

虚拟环境创建

cmd窗口 下创建 python3 虚拟环境 py_django

mkvirtualenv -p python3 py_django

在这里插入图片描述
注意:
Windows 创建的虚拟环境默认在 C:\Users\Administrator\Envs, Administrator 代表我当前电脑使用的用户你们的可能在其他用户下,如需指定创建的虚拟环境的存放的路径,可以在电脑的系统环境变量中添加WORKON_HOME 系统变量
在这里插入图片描述

Linux上安装

安装虚拟环境

sudo pip3 install virtualenv
sudo pip3 install virtualenvwrapper

需保证 Linux上有 Python3的环境。
安装完虚拟环境后输入如下指令测试

mkvirtualenv test

如果提示找不到mkvirtualenv命令,须配置环境变量

# 1、创建目录用来存放虚拟环境
mkdir $HOME/.virtualenvs

# 2、打开~/.bashrc文件
vim ~/.bashrc

# 2.1 添加如下两行
export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

# 3、运行
source ~/.bashrc

WORKON_HOME 存放虚拟环境目录位置可以自己单独设置。

创建虚拟环境

mkvirtualenv py_flask

进入虚拟环境

workon py_flask

退出虚拟环境

如果所在环境为真实环境,会提示deactivate:未找到命令

deactivate py_flask

虚拟环境指令

Windows 和 Linux 平台上的指令都一致。

在这里插入图片描述
注意:

先退出:deactivate
再删除:rmvirtualenv 虚拟环境名称

虚拟环境总结

一、使用虚拟环境不会让主解释器好多库乱
二、例如在单独的虚拟环境下安装 Flask,就知道在后续开发中所使用的所有库,用pip freeze命令就知道你的项目需要什么环境,而在主解释器有好多项目没用到的库。使用虚拟环境到部署到服务器上则方便环境配置,不需要一个一个筛选所需库。

在虚拟环境中利用

  • pip freeze 查看项目所需库环境。
  • pip freeze > requirements.txt导出项目所需库信息。
  • pip install -r requirements.tx批量安装项目所需库。

三、在同一台机器上开发多个项目,而遇到项目所需同一库的版本不一致。因此使用虚拟环境让每个项目独立隔离出来,可以单独使用不同版本库。

最后,感谢您的阅读。您的每个点赞、留言、分享都是对我们最大的鼓励,笔芯~

如有疑问,欢迎在评论区一起讨论!

### Python 虚拟环境管理使用教程与最佳实践 #### 重要性 在Python开发过程中,环境管理至关重要。虚拟环境能够有效解决依赖冲突和实现环境隔离,确保各个项目之间的独立性和一致性[^1]。 #### 工具介绍 对于创建和管理虚拟环境,开发者可以选择多种工具: - **内置工具**:`venv`模块是Python自带的功能强大的工具。 - **第三方工具**: - `Pipenv`集成了`pip`和`virtualenv`的优点,提供了一站式的解决方案。 - `virtualenvwrapper`提供了额外命令行接口简化操作流程。 这些工具有助于在不同的开发阶段(如开发、测试、部署)中正确地运用虚拟环境,并支持与CI/CD流水线的无缝衔接。 #### 安装过程 为了开始使用上述提到的各种工具,通常需要先安装它们。例如,要安装`virtualenv`可以通过如下命令完成: ```bash pip install virtualenv ``` 接着就可以利用此工具轻松创建新的虚拟环境了[^4]。 #### 实际应用案例 考虑一个具体的例子——在一个新项目启动之初设置合适的虚拟环境。假设当前正在处理的是一个标准Web应用程序,则推荐采用较为简单的方案,比如直接调用`venv`来初始化一个新的工作区: ```python import venv builder = venv.EnvBuilder(with_pip=True) builder.create('/path/to/new/virtual/environment') ``` 这段代码片段展示了怎样快速搭建起一个带有预配置好的包管理系统的干净空间供后续编码之需。 #### 高效协作策略 当涉及到团队合作时,保持良好的沟通习惯同样不可忽视。建议遵循以下几点原则以促进工作效率提升: - 缓存依赖项减少重复下载时间; - 对多个运行平台实施一致性的部署计划; - 建立周期性的清理机制维持系统健康状态; 以上措施有助于增强整体性能表现并降低潜在风险因素的影响程度。 #### Windows vs Linux 平台的选择考量 面对跨平台需求场景下,即同时涉及Windows和Linux两大主流操作系统的情况下,关于选用何种具体技术栈的问题值得仔细斟酌。一般而言,在机器学习领域内倾向于优先采纳Conda作为首选框架,而对于常规软件工程项目则更多依据实际情况灵活决定是否继续沿用传统的Virtualenv方式来进行构建[^2]。 #### 多样化解析器的支持 值得注意的是,除了常见的CPython解释器之外,还有诸如PyPy这样的备选项可供选择。每种解释器都有其独特的特性和适用范围,因此应当根据实际应用场景做出合理判断[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值