大数据时代下的网络犯罪与防范:攻防之间的较量
1. 大数据在网络犯罪防范中的应用
商业组织正利用大数据处理技术来检测和预防网络犯罪。通常,会创建大型数据集来存储客户与组织交互的信息,通过分析已知犯罪实例,找出犯罪分子与合法客户行为上的差异,进而标记出符合犯罪特征的行为以防止更多犯罪。这种大数据方法在国家安全和执法机构中也有应用,但这里主要关注金融机构和科技公司的应用。
1.1 犯罪转移现象
犯罪转移是指由于预防措施导致犯罪者或犯罪行为发生变化,进而使犯罪不断演变。在网络环境中,犯罪者无需实际转移地点就能转移犯罪活动,如转向新的地点、时间、目标、方法、犯罪者或犯罪类型。
常见的犯罪转移情况包括:
- 拒绝服务攻击 :提供收费拒绝服务攻击(“booter服务”)的犯罪者,因服务器补丁和支付账户被封锁等障碍,改变攻击方法并接受比特币等新支付形式。
- 网站关停 :网站关停是打击网络犯罪(如网络钓鱼)的常用手段,但犯罪者会转移到新域名或托管提供商,选择不同目标,并采用新方法使关停更困难,还会重新恢复被关停的网站,导致网站关停常被形容为“打地鼠”游戏。
- 大数据检测犯罪 :一些常见的大数据检测犯罪类型,如信用卡欺诈检测,也会出现犯罪转移。随着检测技术的提高,犯罪者会改变作案方式,如从信用卡欺诈转向攻击忠诚度积分账户、钓鱼旅行社获取预订系统访问凭证等。
1.2 网络犯罪风险与大数据方法
大数据系统通过算法检测异常活动,以发现特定类型的网络犯罪,包括使用被盗信用卡、访问被盗账户、恶意