太实用了! 20分钟彻底学会【Deepsort】学习与部署

本文详细阐述了DeepSORT目标跟踪算法,它利用深度学习的ReID特征描述符改进了原有算法,提高了目标区分度,优化了目标丢失和遮挡问题,同时结合卡尔曼滤波处理轨迹预测,实现了更稳定和长期的跟踪性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepSORT的主要思想

想要了解目标跟踪,那么首先需要理解的是跟踪这个概念到底是什么。所有目前主流的目标跟踪算法,底层都是目标检测算法,跟踪是在目标检测的基础上加入了时间这个维度。每一个跟踪输入的是目标检测的检测结果,而跟踪算法输出的是目标的运动轨迹。因此跟踪算法是在目标检测算法的基础上增加了一个时间维度信息

在这个基础上将当前时刻与上一时刻画面中出现的一个又一个目标进行匹配并根据匹配结果,将对应的目标放入对应的轨迹中,从而完成跟踪。

DeepSORT这篇论文主要是使用了更加强大的匹配机制,准确的区分不同目标再有对于原有非深度学习的跟踪算法,优化了目标丢失的问题。这篇文章提出了一个基于深度学习的特征描述符ReID,相比于以往将速度长度,目标坐标信息等特征聚合起来形成的特征向量基于深度学习的特征描述符会有更高的维度来描述物体所表达出的特征,从而能够使跟踪算法更加有效地区分不同目标和相近目标。

并且由于不同目标之间的相似度可以被更加准确区分了,这样在目标丢失的情况下,或者目标没有检测到的情况下,依然可以通过更高维的特征描述符来处理间隔很多帧的同一目标,从而实现更加稳定的长期跟踪,并且优化了原有目标检测算法模型带来的漏检还有遮挡问题。

DeepSORT跟踪检测结果:

deepsort目标跟踪实验

面试中,会问到的问题:

1、什么是目标跟踪?
答:目标跟踪就是在视频中,可以自动检测目标,并且可以反馈每个目标的轨迹的算法

2、目标跟踪算法有哪些?
答:SORT、DeepSort、bytetrack

3、描述一下DeepSort的原理?
答:使用深度学习,优化了SORT,提出了ReID特征描述符,使用级联匹配优化了目标的轨迹,优化了漏检、遮挡等问题带来的轨迹消失。

4、卡尔曼滤波的滤波是什么?
答:卡尔曼滤波,来源于贝叶斯估计,是一种对系统的状态,进行最优估计的算法。由于系统的观测数据,一定会包含世界固有噪声、传感器、模型算法自有噪声,所以在进行最优估计的过程中,通过各种手段处理观测值和估计值和获取最优值,就是一种滤波,因此被成为卡尔曼滤波算法。即,过滤掉各种噪声。

5、卡尔曼滤波是如何用在Deepsort中的?
答:卡尔曼滤波是用在轨迹上的,使用新的观测值,来修正轨迹的系统预测正,得到最优估计。在DeepSort中,t1时刻的目标检测的观测值,会经过一个级联匹配模块,和已有轨迹匹配,配准后的观测值t1和该条轨迹的当前预测值t1,送入卡尔曼滤波生成最优估计值。
在这里插入图片描述
6、卡尔曼滤波器的原理和公式?
答:卡尔曼有两个环节,先估计然后通过观测值和卡尔曼增益,修正估计值
估计环节:
1)通过系统的状态转移矩阵,根据上一时刻的状态,推算出当前的转态,这里是估计值。
2)通过系统的状态转移矩阵,根据上一时刻的协方差,推算出当前的协方差,然后加入系统自有噪声,这里是依然是估计值。
3)计算卡尔曼增益:使用估计的协方差矩阵和观测矩阵(由于观测值和状态描述不一定一致,如果一致就是单位阵),以及世界固有噪声,通过分式计算。目的是如果观测准就提高增益,如果估计准就降低增益。
4)修正系统的估计状态,用卡尔曼增益去放大观测值和估计值的误差,然后用这个结果修正,第一步的状态估计,得到最优估计。
5)修正系统的估计状态,用卡尔曼增益去缩放估计时的协方差,得到最优估计的协方差。
在这里插入图片描述
7、DeepSort的系统状态有哪些?
答:主要是目标检测的输出,[cx,cy,r,h,cx’,cy’,r’,h’],中心点坐标,长宽比,高度,以及他们对时间t的一阶导数。

8、DeepSort的时间t是多少?
答:由于DeepSort是对视频的检测,因此是一帧帧的输入,时间间隔t=1,代表每一帧都更新一次。

9、ReID为什么不作为系统状态?
答:1)减少计算量 2)延续Sort的代码逻辑 3)系统状态描述的偏向于运动信息,可以从这些信息中直接或检测的于观测状态匹配。而深度学习提取到的特征是深层特征,很难用来描述系统的运动轨迹

10、系统状态的初始值如何设定?
答:cx,cy,r,h 来自目标检测的结果,cx’,cy’,r’,h’初始值设为0。时间设为1。其中,cx’表示了Cx的运动速度,一般来说,cx‘=(cx2-cx1)(t2-t1),但是卡尔曼系统不是这么计算的。由于协方差的存在,描述了各个状态量之间的关系,协方差矩阵就带有了速度信息。因此,构建完协方差矩阵后,在通过观测矩阵和协方差计算卡尔曼增益时,会计算速度相对位置的协方差,然后再通过修正系统的估计状态环节,会把估计到的速度值送入到状态中。

### DeepSort 部署指南 #### 3.1 环境准备 为了顺利部署DeepSort,建议创建独立的虚拟环境来管理依赖项。这可以有效避免不同项目之间的库版本冲突问题[^1]。 对于Python环境而言,推荐使用`virtualenv`或`conda`作为环境管理工具: ```bash # 使用 virtualenv 创建 Python 虚拟环境 pip install virtualenv virtualenv venv_deepsort source venv_deepsort/bin/activate # 或者使用 conda 创建环境 (适用于 Anaconda 用户) conda create -n deepsort python=3.8 conda activate deepsort ``` 安装所需的基础软件包以及特定于项目的其他依赖项,特别是当涉及到深度学习框架如PyTorch或TensorFlow时,需确保其正确配置和支持GPU加速等功能[^2]。 #### 3.2 获取源码设置 从官方GitHub仓库克隆最新版DeepSort代码至本地机器上,并按照README文档指示完成初步设定工作。通常情况下,需要下载预训练好的特征提取网络权重文件用于初始化模型实例。 ```bash git clone https://github.com/nwojke/deep_sort.git cd deep_sort pip install -r requirements.txt ``` #### 3.3 修改配置适应实际应用场景 根据具体业务需求调整参数选项,在某些复杂环境下可能还需要引入额外的数据处理逻辑或者优化现有流程以提高性能表现。比如针对智慧交通领域内的车辆识别任务,则要特别关注摄像头角度变化带来的影响因素[^3]。 #### 3.4 运行测试验证效果 最后一步就是编写简单的脚本来调用API接口并传入待分析图像流作为输入源;也可以直接运行内置的应用程序样例来进行快速评估。如果一切正常的话,应该能够看到经过标注后的输出结果展示在屏幕上。 ```python from deep_sort.application import run if __name__ == "__main__": # 设置输入视频路径和其他必要参数 input_video_path = "path/to/input/video.mp4" # 执行跟踪过程 run(input_video=input_video_path, show_image=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值